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Abstract 

Regarding the high corrosion resistance of brass in sulfuric acid, its leaching process is the most important step in
hydrometallurgical recovery of brass scraps. In this study, the electrochemical dissolution of brass chips in sulfuric acid
has been investigated. The electrochemical cell voltage depends on various parameters. Regarding the complexity of
electrochemical dissolution, the system voltage could not be easily predicted based on the operational parameters of the
cell. So, it is necessary to use modeling techniques to predict cell voltage. In this study, 139 leaching experiments were
conducted under different conditions. Using the experimental results and gene expression programming (GEP), parameters
such as acid concentration, current density, temperature, and anode-cathode distance were entered as the inputs and the
voltage of the electrochemical dissolution was predicted as the output. The results showed that GEP-based model was
capable of predicting the voltage of electrochemical dissolution of brass alloy with correlation coefficient of 0.929 and root
square mean error (RSME) of 0.052. Based on the sensitivity analysis on the input and output parameters, acid
concentration, and anode-cathode distance were the most and least effective parameters, respectively. The modeling results
confirmed that the proposed model is a powerful tool in designing a mathematical equation between the parameters of
electrochemical dissolution and the voltage induced by variation of these parameters. 
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1. Introduction

Increasing demand for the metals combined with
industrial progresses and population growth has
significantly declined the mineral resources. Along
with high production and consumption of the metals,
a huge amount of metallic scraps is produced.
Therefore, recovery of metals from these secondary
resources has gained considerable interest to
compensate the mineral shortage as well as resolving
the environmental problems [1]. Recovery of Copper
[2-7] and zinc [8-10] from the secondary resources
has been widely researched due to high application of
these metals. Brass alloy production wastes such as
slag, dusts, chips, and scraps are among the
secondary resources containing both Zn and Cu.
Despite the high popularity of hydrometallurgical
methods for metals recovery from the secondary
resources and scraps, this method has a major
drawback for recovery of brass scraps: corrosion
resistance of brass towards sulfuric acid; hence the
majority of researches are focused on the leaching
step [11]. To improve the yield of brass leaching,

electrochemical methods can be employed in which
the metal is placed in the anode position of an
electrochemical cell and will be dissolved by
application of direct current. Application of the
electrochemical dissolution processes has been also
reported by other researchers for copper recovery
from copper wastes [12, 13]. In electrochemical
dissolution of the brass, copper, and zinc will be
dissolved at anode. Copper ions will be reduced at
cathode surface, depositing as copper cathode. The
obtained zinc sulfate solution can undergo electro
winning in a separate cell resulting in zinc cathode.

One of the main operational parameters of an
electrochemical dissolution cell is its voltage which
has a direct impact on electrical energy consumption
of this process. Cell voltage is not an independent
parameter, but depends on the other operational
parameters of the cell such as its electrolyte condition
(acid concentration and temperature) current density
and anode-cathode distance. Regarding high number
of effective parameters, prediction of cell voltage is
not possible by simple modeling methods such as
regression analysis. In this context, application of the
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modern techniques to determine the optimal condition
of electrochemical brass dissolution is a crucial step.
Among the available methods, gene expression
programming (GEP) (invented by Friera) is a suitable
tool to obtain the governing mathematical equation.
GEP is an evolutional algorithm and is in fact an
extended version of genetic algorithm (GA) and
genetic programming (GP) which has resolved their
limitations [14]. GEP method was used to predict the
nonlinear behavior in leaching process such as copper
recovery in columnar leaching of copper oxide ores
[15], modeling of diaspore leaching kinetics [16],
modeling of leaching step in cobalt recovery from Li-
ion batteries [17] Cu-Zn separation by supported
liquid membrane [18], chemical kinetic modeling and
parameter sensitivity analysis for the carbonation of
Ca2+ and Mg2+ [19], modeling and optimization of
synergistic effect of Cyanex 302 and D2EHPA on
separation of zinc and  manganese [20], and to assay
the microbial population in heap bioleaching
operations [21]. The accuracy of this method has been
confirmed in these researches.

In this study, the electrochemical dissolution
voltage of the brass in sulfuric acid was simulated
based on a new GEP-based method. According to the
literature review, no study has modeled the
electrochemical dissolution voltage using GEP
method. To determine the dependence of the
electrochemical dissolution process on the process
parameters (sulfuric acid concentration, current
density, temperature, and anode-cathode distance)
experiments were conducted on electrochemical
dissolution of the brass under different operation
parameters. Results of these trials were employed to
train and test 8 different GEP algorithms. To
investigate the accuracy of the simulations, 3 of these
8 models were further investigated.

2. experimental and theoretical background
2.1 Materials and experimental procedure

Brass chips with the chemical composition listed
in Table 1 were used as the starting materials. The
brass chips were first sieved and grains with size
range of 850-1499  underwent electrochemical

dissolution. Since alloy chips couldn’t be directly
used in the anode, an anodic basket made of Ti with
dimension of 30x10x3mm3 was employed and the
chips were placed in it. An electrochemical cell with
dimension of 15x15x15 cm3 was made out of glass
and employed as the electrolysis container. Anodic
basket was immersed into the electrolyte up to the
depth of 10 cm and two stainless steel 316 cathodes
(10x10 cm2) were placed on its both sides.
Electrolyte was prepared by dilution of sulfuric acid
(Merck 98%) in deionized water. The required
electrochemical potential was applied using a DC
voltage device (MCH-K3010DN) and the voltage
level was measured by a digital multimeter
(WH5000) which was linked to a PC where it was
recorded. Fig 1 schematically illustrates the
equipment and devices used in electrochemical
dissolution of brass. In this study, 4 parameters
including acid concentration, current density,
temperature and anode-cathode distance were
studied. In each experiment, electrolysis voltage was
measured and recorded as the result of experiment.
The experiments conditions are listed in Table 2.
Totally, 139 data were collected from the
experiments.
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Table 2. The range of data collected

Figure 1. Schematic illustration of the equipment and
devices: 1- DC Power supply  2- Cathode 3-
Anode 4- Multimeter 5- Electrochemical cell 6-
Computer

Element Cu Zn Pb Fe Sn Ni Al
Weight
percent 58.60538.369 2.102 0.47 0.231 0.152 0.042

Parameters Symbol Unit Standard Deviation Max Min

acid concentration

Inputs

[H2SO4] g/l 48.89 250 22.08

Temperature T °C 8.86 54 26

current density i A/m2 68.87 525 5
anode-cathode

distance d cm 0.7 9 1

electrolysis voltage Output V Volt 0.632 5.5 0.5

Table 1. Chemical composition of Brass chips



2.2 gene expression programming (gep)

Similar to genetic algorithm, gene expression
programming possesses linear chromosomes with
constant length and similar to genetic programming,
GEP has tree-like structure with various sizes and
shapes. The only difference is that, on GEP, the tree
structure is called expression tree (ET). GEP is one of
the most powerful methods for nonlinear and complex
modeling [22, 23]. In GEP, genome or chromosome is
a coded linear string with a fixed length which can
include one or several genes. Despite the constant
length of the chromosomes, ET in GEP can have
different sizes and shapes. GEP method has two
programming languages: Karva and expression tree
which can be converted to each other. Karva language
was invented by Fiera to read and express the coded
program in the chromosome. In this type of coding,
upper numbers indicate the position of the functions
(mathematical operators) and terminals (problem
variables and constant numbers). For coding, the
positions are coded from 0 to 9, after 9, the coding
will again start from 0. The starting point of the gene
is from position 0 of the code, but its final point is not
always in code 9 as a part of gene may not be
expressible in tree-like structure but has a significant
role in development. The section of chromosome
which can be expressed in tree-like structure is called
open reading frame (ORF). In GEP models, the results
are displayed in ET form.

In GEP, each gene has two parts: head and tail. In
head section, functions and terminals exist while in
tail section, only the terminals can be placed. The
head size (h) is determined by the designer while the
tail size is a function of head size and maximum
number of the functions arguments (nmax) which can
be obtained by Eq (1) [14]:

(1)

Chromosomes usually contain several genes. For
each problem, the number of chromosomes, genes,
and head size of the genes can be determined by the
designer through trial and error processes. For multi-
gene chromosomes, codes related to each gene
compose a sub-tree (sub-ET); the sub-trees are
connected to each other through functions called
linking functions giving rise to a larger ET. Finally, a
mathematical equation can be extracted for predicting
the values from ET. Similar to GA and GP, in GEP,
first an initial population of chromosomes is randomly
created. These chromosomes are initially the linearly-
coded structures which follow the Karva language. In
the next step, they will be expressed in ET structure.
Then, regarding the fitness function determined by the
designer, the fitness of each chromosome from the
first generation will be calculated. If the termination

condition (determined by the designer) is achieved,
the process will be terminated; otherwise it will be
continued in such a way that the best people
(chromosome) of each generation are selected and
copied to the next generation. Then the genetic
operators will be applied on the chromosomes to form
the new generation. The mentioned steps will be
repeated until reaching to the termination condition.
Genetic operators of GEP include mutation, inversion
and three types of transposition (GENE, RIS, and IS)
and three types of recombination operator: single-
point, two-point, and gene recombination, in Fig 2
GEP flowchart is shown.

2.3 Methodology and prediction of
electrochemical cell voltage

The parameters in Table 2 were considered as the
model inputs while electrolysis voltage was taken as
the model output. GeneXpro v5 software was
employed for modeling. 125 datasets were used for
training whereas 14 datasets were taken for model
testing. Modeling process involved 5 major stages
[24]. First stage is the selection of fitness function; in
this paper, root mean square error function was
employed as the fitness function ith chromosome; Eq.
(2). As the increase of fitness function will enhance
the efficiency, this function cannot be directly
considered as the fitness function; thus Eq. (3) was
employed to evaluate the ith chromosome fitness. The
second stage involves the selection of terminals
(inputs) and choosing the function for forming the
chromosomes. The third stage includes determination
of the chromosomes structure (i.e. head size and
number of genes for each chromosome). The fourth
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Figure 2. GEP model flowchart



stage involves the selection of the linking function
and genetic operators and their rates will be selected
in the last stage. In this study, 150 models were
designed by trial and error to design the best model;
some of them were selected whose structures are
presented in Table 3. Genetic operators’ rate and the
formed models are presented in Table 4.

(2)

In which      is the predicted value by ith chromosome
for jth data among n data. represents the measured
electrolysis voltage for jth data.

(3)

3. results and discussions
3.1 Model Validation

The model efficiency was evaluated by R2 and
RMSE indices. Correlation coefficient (R2) indicates

the correlation between the measured voltage and the
predicted ones; its value ranges in 0< R2 <1. R2

values near zero reflect weak or no linear correlation
between the variables; this means that the correlation
is nonlinear and random. When the data are placed
on a direct line (R2 =1), the two variables are
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GEP
Model No.

Number of
chromosomes

Number
of genes

Head
size

Linking
function Used functions

1 20 3 3 Addition
+,-

,*,/,Exp,Ln,Inv,X2,X3,Add3,Sub3,Mul3,Avg2,Sin,Cos,Tan,Ata
n,Tanh,Not

2 20 5 3 Addition +,-,*,/ ,Ln,Inv,X2,X3,3Rt,Add3,Mul3,Avg2,Sin,Tan,Atan,Not

3 40 3 3 Addition +,-,*,/,Exp,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Sin,Tan,Atan,Not

4 40 5 5 Multiplication +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Cos,Tan,Atan,Not

5 40 5 5 Addition +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Cos,Tan,Atan,Not

6 40 3 5 Addition +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Sin,Tan,Atan,Not

7 40 3 5 Multiplication +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Sin,Tan,Atan,Not

8 50 3 5 Addition +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Cos,Tan,Atan,Not

9 50 5 5 Addition +,-,*,/,Ln,Inv,X2,X3,Add3,Mul3,Avg2,Sin,Tan,Atan,Not
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Table 3. Structure of GEP models

Genetic operators Rate

Mutation Rate 0.00138

Inversion 0.00546

IS transportation rate 0.00546

RIS transportation rate 0.00546

Gene transportation rate 0.00277

One-point recombination rate 0.00277

Two-point recombination rate 0.00277

Gene recombination rate 0.00277

Table 4. Genetic operators’ rate



completely correlated. The higher the correlation
coefficient, the better the performance of the
designed model will be. To validate the model, in
addition to correlation coefficient, RMSE was also
used. Lower values of this parameter indicate better
performance of the model in predicting the system
voltage. The system voltage values predicted by the
models mentioned in Table 2 as well as their
correlation coefficients and RMSEs are presented in
Fig 3 and Fig 4, respectively. As the figures suggest
that models No. 9, 2, and 7 showed better
performance as they exhibited the highest
correlation coefficient while having the lowest
RMSE. ETs of these three models are presented in
Fig 5. Finally, a mathematical equation was
extracted from each of these sub-ETs as listed in
Table 5.

The system voltages predicted by these three
superior models are presented in Table 6 for training
and testing stages. Model No. 9 showed a slightly
better performance compared to the other models.
Fig 6 and Fig 7 show the difference in the measured
and predicted voltage and the diagram of the
dispersion of the measured and predicted voltages
(by model No. 9), respectively. Table 7 also lists the
measured and predicted values (by three superior
models) for the test data and their absolute error

(calculated by Eq 4).

(6)

3.2 Sensitivity analysis

In this section, to determine the effect of each
parameter on the system voltage and their
relationship, Pearson correlation coefficient of each
parameter relative to the system voltage (predicted by
model 9) (both training and testing data) was
calculated as presented in Fig 8. The direction of the
columns in Fig.8 (a. Correlation coefficients and b.
Change in Output mean) presents the positive or
negative impact of each input on the output. If the
direction is downward, by increasing the input
parameter, the output parameter will be decreased.
Otherwise, if the direction is upward, by increasing
the input parameter, the output will be increased. On
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Figure 3. Correlation coefficient of GEP models

Figure 4. The root square mean error of GEP models
Figure 5. Expression trees of best models (d0=[H2SO4],

d1=T, d2=i, d3=d)
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the other hand, the coefficient of each input shows
that which input parameter is more effective [25]. As
it is shown in this figure, both graphs confirm each

other. Acid concentration had the highest correlation
and was recognized as the most effective parameter
on the system voltage. Its correlation was however
negative meaning that an increase in sulfuric acid
concentration will decline the system voltage. By
increase of the sulfuric acid concentration, electric
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GEP Model Number Mathematical relations extracted

1 V= exp(sin(exp([H2SO4]))) + sin((Ln([H2SO4])*-1.42)) + exp(sin(Ln(T))))

2 V= (1/((3Rt(T))+(-1.72))))+((T+6.77)/(([ H2SO4]+(-7.68))/2)) +(1/((((T)/(i))*1.99*T))) +  Ln(((-
9.04+9.12)*9.04))

3 V= ((1/([ H2SO4]))*((i+(-14.56))/2))+ ((1/(T)))*((28.74+d)/2))+ ((1/(d))*sin(i))

4
V= ((T+(((-5.14+d)/2)-(d*-1.66)))/2) * ((T+((d+8.93)+(T/-5.79)))/2) *

(((Ln(8.69)+(d+8.69))+((i+[ H2SO4])/2))/2) * (4.37-(1/(Ln((i+[ H2SO4]))))) *  (1/((T*(-3.14+[
H2SO4])*(T+3.11))))

5
V= (tan(([H2SO4]*8.57))/((d+[ H2SO4])/d)) + (1/(((1-(((-0.5-0.5)/2)+(-9.36)+d))^2))) +

((([H2SO4]*8.97)+(T+T))/([ H2SO4]*T)) + (((i/4.15)-(-7.13/d))/(([ H2SO4]+d)/2)) + (T/((-
4.8^3)*((d+d)/2)))

6 V= (1/((((9.56*-1.3)*1.96)-(-1.3-T)))) + ((((d^2)+i)/2)/(d+[ H2SO4])) +  ((((((3.05+4.09)/2)+(-
6.82))+4.09)/2)^3)

7 V= ([H2SO4]+((i+d+d)+(d^2)+d)) * (1/((4.69*[ H2SO4]*(((-8.47)+T)/2)))) * ((T+(3.16^2))/2)

8 V= tan(tan(atan((([H2SO4]/T)/T)))) + ((1/([ H2SO4]))*(((i+(-3.32))+(-2.34))/2)) +  (1/((((-
4.81)+(((((-1.14)+i)/2)+T)/2))/2)))

9 V= (Ln((1/([ H2SO4])))-(sin(5.47)+d)) + ((((d+d)/2)+(((-1.79)+(-5.67))/2))-(i+(-7.22))) + (1-[
H2SO4]) + (((i/[ H2SO4])/((7.69+1.1)/2))+(i+[ H2SO4])) + sin((((9.06*2.23)-[ H2SO4])/(-7.1*T)))

Table 5. Mathematical equations for different GEP models

GEP Model
Number

Test Train
RMSE R2 RMSE R2

9 0.052 0.929 0.14 0.955
2 0.075 0.953 0.116 0.973
7 0.106 0.829 0.103 0.975

Figure 5. Expression trees of best models (d0=[H2SO4],
d1=T, d2=i, d3=d)

Figure 6. Comparison between the measured and predicted
voltage by GEP model

Figure 7. The dispersion diagram of measured and
predicted voltages by model No. 9.



conductivity of the electrolyte will be enhanced and
hence the IR drop in the electrolyte will be decreased.
Therefore, the voltage required for brass dissolution
will be reduced. Moreover, by increase of sulfuric
acid concentration and the concentration of H+ ions
will be enhanced which will facilitate the cathodic
reduction of these ions in lower voltages:

Higher concentrations of sulfuric acid also
increase the corrosivity of the electrolyte; hence the
electrochemical dissolution of the brass will be easier
and achievable at lower voltages; therefore, increase
of sulfuric acid concentration has a significant impact
on reducing the process voltage; thus the acid
concentration should be increased as much as
possible. The sulfuric acid concentration should be
selected in a way that the zinc sulfate solution resulted
at the end of the electrolysis could be applicable for
electrowinning process.

Anode-cathode distance showed a near-zero
correlation (0.00065%) indicating that this parameter
did not have a significant impact on the system
voltage. As in the electrochemical processes such as
electrowinning and electrorefining, higher anode-
cathode distance will reduce the number of anodes
and cathodes per cell and hence more cells are
required for extracting a specific amount of metal, the
anode-cathode distance should be selected as short as
possible. But by shortening the anode-cathode
distance, they may contact with each other resulting in
short circuit; moreover, the time interval for
separating the metallic product from the cathode
should be shorter and the staff costs will be increased;

so the anode-cathode distance should be adequately
long. Regarding this dual impact of anode-cathode
distance, an optimized distance should be selected.
Fortunately, since this parameter has low impact on
the process voltage (based on sensitivity analysis),
decision about the distance is simple; as one of the
effective parameters on the optimal selection of this
parameter (the process voltage) is omitted from the
decision.

Current density exhibited a positive correlation
with the process voltage indicating that an increase in
the current density will enhance the system voltage.
An increase in current density can enhance the anodic
and cathodic overpotentials in the dissolution process
and copper and zinc entrance from anode to the
solution, as well as the reduction of copper ions and
hydrogen in the cathode. Therefore, the voltage
required for the electrolysis will be increased. Thus, if
we only wish to reduce the voltage and energy
consumption, the current density should be declined.
But a decrease in the current density will reduce the
cell productivity and hence increase the production
costs such as staff costs. Working in low current
densities requires increase of electrolysis cells to
produce a specific amount of metal which will require
higher capital. Thus an optimal value should be
selected for current density. Increase of current
density will enhance the density of the energy input to
the system which will increase the temperature of the
electrolyte. According to Fig 8, increase in
temperature decreased the system voltage and process
energy consumption. Therefore, working at higher
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No Experimental
voltage

Predicted voltage Absolute residual error (%)

GEP9 GEP2 GEP7 GEP9 GEP2 GEP7
1 0.639 0.63728 0.684986 0.690188 0.269 -7.2 -8.01
2 0.639 0.63728 0.684986 0.690188 0.269 -7.2 -8.01
3 1.112 1.119021 1.033948 1.280219 -0.63 7.019 -15.1
4 1.133 1.144986 1.05117 1.322723 -1.06 7.222 -16.7
5 1.159 1.170952 1.068391 1.365227 -1.03 7.818 -17.8
6 0.944 0.868899 0.853282 0.858187 7.956 9.61 9.09
7 0.97 0.868899 0.853282 0.874754 10.42 12.03 9.819
8 1.01 0.868899 0.853282 0.894635 13.97 15.52 11.42
9 0.961 0.953055 0.945079 1.010656 0.827 1.657 -5.17
10 0.983 0.97902 0.963651 1.054369 0.405 1.968 -7.26
11 0.639 0.663606 0.69325 0.704962 -3.85 -8.49 -10.3
12 0.635 0.650247 0.688784 0.697355 -2.4 -8.47 -9.82
13 0.84 0.868899 0.853282 0.834992 -3.44 -1.58 0.596
14 0.872 0.868899 0.853282 0.844933 0.356 2.147 3.104

Table 7. Experimental and predicted values in test stage for top three models



current density values is also desirable. As a summary,
the sulfuric acid concentration should be selected as
high as possible while an optimized value should be
employed for anode-cathode distance and current
density. Selection of the optimal values requires
further information in terms of process technology
and costs (energy costs and staff costs); in this
context, a further study is recommended.

4. conclusions

In this study, after brass dissolution
experiments and collection of the experimental
data, GEP method was employed for predicting the
voltage of electrochemical brass dissolution. For
this purpose, acid concentration, temperature,
current density and anode-cathode distance were
used to predict the electrolysis voltage during
electrochemical dissolution of brass. After
modeling and formation of various models, three
superior models were selected. System voltage
prediction indicated the proper performance of the
GEP method in predicting the system voltage. The
best GEP model (model 9) predicted the system
voltage with correlation coefficient of 0.929 and

RMSE of 0.052. Using system voltage values
predicted by model 9 and input parameters,
sensitivity analysis was conducted in which acid
concentration and anode-cathode distance were
determined as the most and lease effective
parameters on system voltage, respectively. Finally
given the success of the simulation of
electrochemical brass dissolution by GEP method,
it can be concluded that this approach can be
experienced to simulate the electrochemical
dissolution processes of other materials.
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Figure 8. Correlation coefficient of input parameters and
the system voltage predicted by model No. 9
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Apstrakt

Kada je u pitanju visoka otpornost mesinga prema koroziji u sumpornoj kiselini, postupak luženja predstavlja najvažniji
korak tokom hidrometalurškog postupka za dobijanje mesinganog otpada. U ovom radu je predstavljeno elektrohemijsko
rastvaranje mesinganih strugotina u sumpornoj kiselini. Elektrohemijski napon ćelije zavisi od različitih parametara. Kada
je u pitanju složenost elektrohemijskog rastvaranja, napon sistema je teško predvideti na osnovu operativnih parametara
ćelije. Zbog toga je neophodno koristiti modele za predviđanje ćelijskog napona. Tokom ovog istraživanja sprovedeno je
139 eksperimenata luženja pod različitim uslovima. Kombinovanjem rezultata eksperimenata i genetskog ekspresionog
programiranja (GEP), parametri, kao što su koncentracija kiseline, trenutna gustina, temperatura i rastojanje između
katode i anode, korišćeni su kao ulazni podaci, dok je predviđeni napon tokom elektrohemijskog rastvaranja posmatran kao
izlazni podatak. Rezultati su pokazali da je model zasnovan na genetskom ekspresionom programiranju sposoban za
predviđanje napona tokom elektrohemijskog rastvaranja legure mesinga gde je koeficijent korelacije iznosio 0,929, a
vrednost korena srednje kvadratne greške (RMSE) je bila 0,052. Na osnovu analize osetljivosti ulaznih i izlaznih
parametara, koncentracija kiseline i rastojanje između anode i katode su bili najmanje i najviše efikasni parametri,
respektivno.
Dobijeni rezultati su potvrdili da predloženi model predstavlja moćan alat za razvijanje matematičke jednačine između
parametara elektrojemijskog rastvaranja i napona indukovanog promenom ovih parametara.

Ključne reči: Elektrohemijsko rastvaranje; Dobijanje; Mesingani otpad; Prediktivni model; GEP.


