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Abstract

The article presents the use of artificial neural networks (ANN) to build a system of analysis and forecasting of the
durability of forging tools and the process of acquiring the source knowledge necessary for the network learning process.
In particular, the study focuses on the prediction of the geometrical loss of the tool material after different surface treatment
variants.The methodology of developing neural network models and their quality parameters is also presented. The
standard single-layer MLP networks were used here; their quality parameters are at a high level and the results presented
with their participation give satisfactory results in line with technological practice. The data used in the learning process
come from extensive comprehensive performance tests of forging tools operating under extreme operating conditions (cyclic
mechanical and thermal loads). The parameterization of the factors important for the selected forging process was made
and a database was developed, including 900 knowledge vectors, each of which provided information on the size of the
geometrical loss of the tool material (explained variables). The value of wear was determined for the set values of
explanatory variables such as: number of forgings, pressure, temperature on selected tool surfaces, friction path and the
variant of the applied surface treatment. The results presented in the study, confirmed by expert  technologists,  have a clear
applicational character, because based on the presented solutions, the optimal treatment can be chosen  and the appropriate
preventive measures applied, which will extend the service life.
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1. Introduction

Punches, dies and other forging instrumentation
applied in hot forging processes work under extreme
conditions (high, periodic thermal loads from 80 to
1200 ℃, and mechanical loads even up to 1000
MPa).Therefore, they are exposed to the action of
multiple destructive factors and phenomena, causing
their accelerated and excessive wear. For this reason,
the analysis and prediction of durability remains a
difficult, unsolved problem and a challenge for many
researchers and scientific centers. The main process
parameters affecting the forging process and
durability include: temperature of stock material and
tools, preform geometry, work settings and cycle of
the forging units, friction conditions (lubrication and
cooling) as well as tool shape and quality. Low
durability of forging instrumentation, caused by the
presence of destructive mechanisms, has a significant
impact on the quality and cost of the fabrication of
forgings. The most common destructive mechanisms
are: plastic deformation and abrasive wear during

semi-hot forging [4] and hot forging [17], fatigue
cracks [1,16,26], thermomechanical fatigue [3,8].
Among them, the most frequently occurring
mechanism, as well as the most studied one, is
abrasive wear, which is predominant, above all, in
cold forging processes [30]. Many papers and studies
concerning a comprehensive analysis of the primary
tool destruction mechanisms in forging processes can
be found in the literature [17,21]. There are also many
articles and works of research concerning the
development and application of various methods and
techniques to improve the durability of forging
equipment [12,19,20], which is both scientifically and
economically justified. Many different informatics
methods and tools are currently becoming
increasingly popular, as they partially replace the
costly and time-consuming physical experiments with
virtual experiments [14,18,32]. Efforts are also being
made to employ expert systems and decision support
systems in the optimization and prediction of forging
tools’ durability. New formalizations of knowledge
representation are also being developed in
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computerized systems, such as: graph theory, fuzzy
logic, artifical neural networks, and genetic
algorithms, thus making it possible to build computer
systems supporting various fields of human activity,
including hot die forging processes [23,31]. In the
work [15], Katayama et al. developed an expert
system to design a cold forging process. Fuzzy logic
was used to formulate the principles of the database of
this system. Fuzzy logic was also used to develop an
expert system for predicting the analysis results with
the finite element method when solving the problem
of rubber cylinder compression [27]. Gangopadhyay
et al. elaborated an expert system for predicting the
loads and axial stresses during forging [5]. Artificial
neural networks have been applied to solve many
problems [29]. The application of the finite element
method and intelligent system techniques to predict
the applied force during the radial forging process was
studied in [2]. An artificial neural network was also
applied to study the relationships between the
mechanical properties and the deformation
technological parameters of the TC11 titanium alloy,
with the use of the data from the isothermal
compression test and the conventional tensile test of
the forged TC11 titanium alloy at room temperature
[22,28]. 

The authors' own work may also provide
information about the potential and large ANN
capabilities, confirmed and verified by the results of
the research. For example, the article [6] provides an
expert system for a durability analysis, while the
manuscript [13] shows the use of the ANFIS
consumption analysis of forging tools. In the work
[11], ANN were  demonstrated to work as a decision
support system in the global analysis of the operation
of forging tools under different operating conditions.
For this reason, ANN are used for further applications,
including attempts to develop a decision support
system, analyze and predict the durability for forging
tools coated with protective coatings (nitrided layer +
PVD coating) and to perform nitriding and pad
welding of their surface.

The goal of this work is to develop a system for
the analysis and prediction of forging tools’ durability
based on artificial neural networks, with a particular
emphasis on the loss of the tool material, as well as on
the material test results and tests originating from the
numerical analysis of forging tools used in the second
cover forging operation, with different variants of
thermochemical treatment, over the course of their
work, thus creating the learning database. 

2. reSeArch Methodology

The research which made it possible to build a
system for the analysis and prediction of the forging
tools’ durability, with the application of neural

networks, was conducted in two stages: 
The first stage covered operational tests, material

tests and numerical modeling of the industrial hot die
forging process of a cover-type forging. An extensive
database containing the results of material analyses
and simulations was created as a result of these
comprehensive studies. 

The second stage of research, related to the use of
the developed database, aimed at building a model of
representing the knowledge of the studied process.
The obtained source data served as the training data
for artificial neural networks, which were selected as
the formal tool describing the tested phenomenon.
Only a part of this extensive database was used in this
paper. A set of neural networks determining the value
of geometrical wear for tools working with specific
surface layers was selected.

2.1 Description of the process

The industrial process of forging a cover-type
forging (Fig. 1) is performed on a crank press with the
pressing force of 18 MN (Fig. 2) in three operations.
The first operation is upsetting, the second -
preliminary die forging, and the third - finishing
forging.

After the forging process, and after normalization
and mechanical processing, the cover forging is a
component of a gearbox for passenger vehicles (type
of a seal at the exit of the drive shaft from the
gearbox). The material of the forging is C45 steel, in
the form of a cylinder with the following approximate
preform dimensions: diameter 55 mm, length 95 mm,
weight 1.77 kg. The stock material’s initial
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Figure 1. Cover forgings: a) photo of a forging after
finishing forging, b) “hot” forgings after the
forging and trimming process, placed on a
conveyor belt leading to controlled cooling [10]

Figure 2. Massey press with pressing force 18 MN; a)
photo of entire machine, b) view of cover forging
tool mounted on press [10]



temperature is 1150℃. 
The tools subject to analysis used in the process

are made of WCL steel, pre-heated to the temperature
of approx. 250 ℃.  

The mean tool durabilities in the particular
operations (data from the technological department at
Kuźnia Jawor) are as follows: 

- preliminary forging: inserts: 5400 forgings;
filler: 5400 forgings;

- finishing forging:  inserts: 9000 forgings; filler:
4500 forgings.

The tools used in the second forging operation
(preliminary forging) are subjected to the highest load
because the preform is formed to the greatest extent
during this operation. In this research, one of the tools
applied in the second forging operation, i.e. upper
insert filler (Fig. 3) was analyzed in detail. The
operational studies included testing of the tools with
the following coatings:

- nitrided layer;
- hardfacing;
- hybrid layer, type: nitrided layer/PVD coating.

Two PVD hybrid layers were selected for the study:
- Cr/CrN, 
- Cr/AlCrTiN. 
The standard tools applied in operations II and III

are nitrided (characterized by the surface hardness of
1100-1150 HV). Meanwhile, the application of hybrid
layers increases the hardness to approx. 2100-3200
HV, and in the case of pad welding (hardfacing), the
hardness equals 700 HV (thickcnes  5mm). The tools
prepared in this manner underwent operational tests
under the industrial conditions at Kuźnia Jawor S.A.,
where the forging processes were performed with the
use of tools for different numbers of forgings.

Table 1 shows the chemical composition and the
selected mechanical properties of forgings and tools,
whereas Table 2 presents the main parameters of the
different variants of the applied surface engineering
treatment.

2.2 Operational and material tests as well as
numerical modeling

Within the scope of this stage, the influence of
specific forging process parameters (e.g. tool
temperature, lubrication, pressing forces, deformation
time, applied protective layer, etc.) on the tool wear
after a specific number of forgings was measured and
tested in every area. A database containing the results
of these measurements was developed. Every record
of the developed base contains information about the
value of tool wear in a specific area for defined values
of forging process parameters as well as information
about the wear mechanisms occurring in this area
(thermomechanical fatigue; abrasive wear; plastic
deformation; mechanical fatigue). This was achieved
through:

a) comprehensive operational investigations of
tool surfaces covering: 

- macroscopic analysis, enabling a visual
assessment of the state of wear on the tools’ working
surfaces, 

- dimensional analysis – 3D scanning of worn
tools for the purpose of determining the geometrical
loss (wear) of tool impressions, based on a
comparison of the superimposed images obtained
from laser scanning of new and worn tools after
specific numbers of forgings, in every area. 

b) microstructural investigations of tools, for the
purpose of observing the structural changes in the
surface layer in 5 selected working areas of the tool.
Based on the analysis of the changes in the tools’
surface layers, individual areas were assessed and
assigned the appropriate shares of destructive
mechanisms and material loss, regardless of the type
of the mechanism.  

c) microhardness measurements of the tested tools
in the selected areas, at a distance of 0 to 0.5mm from
the surface layer. 

d) numerical modeling – the parameters difficult
or impossible to determine experimentally or 
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Table 1. The chemical composition and selected mechanical properties of forging and tools

Figure 3. Tool set in II operation of roughing (preliminary
forging)

Material C Mn Si P S Cr Ni Mo Cu Re (21 oC)
[MPa]

Rm (21 oC)
[MPa] Hardness

C45 (1.0503)
lid forging 0.42-0.5 0.5-0.8 0.1-0.4 max

0.04
max
0.04

max
0.3 max 0.3 max 0.1 max 0.3 270-490 550-850

229 HB
(after

softeinng)
WCL

(1.2343)
forging tools

0.32- 0.42 0.2-0.5 0.8-1.2 max
0.03

max
0.03 4.5-5.5 max

0.03 1.2-1.5 max 0.3 1570 1900
650   HV

core
material



analytically, such as: pressing forces, friction path,
temperatures in contact, were determined by means of
numerical modeling with the use of the Marc Mentat
simulation package.

2.3 Development of a knowledge representation
model for a computer system

The second stage of research involves the
application of the database which was obtained for the
development of a model representing the knowledge
of the selected die forging process for a computer
system. The system's primary task is to predict the
durability of forging tools. A list of the parameters
analyzed by the system, in the context of the
input/output data, is presented in Fig. 4. The input
variables are: number of forgings, temperature,
pressure, path of friction, type of surface layer; the
output variables are: material loss and percentage
share of the four primary destructive mechanisms in
tool wear. Many formal methods making it possible to
model phenomena of a strongly non-linear nature, as
was the case in the process under analysis, were
applied.

Fuzzy logic was employed in the first approach
[6], and models based on the hybrid ANFIS algorithm
[13] were also developed. However, the best results 

and the lowest prediction error, compared to the
previous models, were achieved by the system
developed with the use of artificial neural networks
[24]. The data which was gathered was then used as a
source of training data for the artificial neural
networks.

3. results and discussion

The summary of the research covers the
presentation and analysis of the obtained results, both
in the 1st stage of research - material and numerical
tests, and in the 2nd stage - analysis of the results
obtained from the developed artificial neural networks
from the perspective of their correctness in
comparison to the results obtained under industrial
conditions. 

3.1 Results of 1st stage of research

The performed comprehensive operational studies
of the surfaces pertained to the phenomena occurring
in the surface layer of the tools which had been used
to fabricate a specific number of forgings and were
withdrawn from further production for the purposes of
the research. The tests serving as examples for the
development of the database, which was then used in
the decision support system, are presented below. The
tests at this stage were divided into several substages.

3.1.1 Macroscopic analysis of tools’ working
surfaces

Fig. 5 presents photographs of the working
surfaces of the selected tools with four types of
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Figure 4. List of analyzed forging process parameters 

Nitriding layer CrN coating Cr/AlCrTiN coating Pad welded layer
Thickness g800~70 µm g~8.5 µm g ~ 6.7 µm g ~ 5 mm

Hardness [HV] 800 – effective hardness
1200 – max. hardness 2100±140 3250±315 700HV

Young modulus [GPa] E=220 – 240 E = 215 ± 25 GPa E = 360 ± 25 GPa E=160 – 180GPa
Coeff.of friction–steel µ=0.55 µ= 0.32 µ=0.48 µ=0.45

Roughness Ra/Rz/Rt
0.49/2.16/3.32

Ra/Rz/Rt
0.43/1.16/1.92

Ra/Rz/Rt
0.29/2.28/3.40

Ra/Rz/Rt
0.24/2.08/2.35

Adhesion of coat. to
substrate in linear

scratch test[N]
-

Lc1 = 70 ± 2 Lc1 = 41 ± 2 Lc1 = 35 ± 2
Lc2 = 80 ± 2 Lc2 = 65 ± 2 Lc2 = 40 ± 2
Lc3 = 138 ± 4 Lc3 = 166 ± 4 Lc3 = 145 ± 4

Abrasive wear
resistance index at

500oC: Wz500
[mm3/N·km]

5.41 x 10-6 8.35 x 10-2 8.41 x 10-4 6.43 x 10-2

Table 2. The main parameters of different variants of applied surface engineering treatment



coatings. The macroscopic analysis of the studied
tools’ working surfaces revealed different types of
damage. Strong abrasive wear, in the form of deep
grooves propagating radially from the center of the
die according to the flow direction of the material
filling the impression, was observed on the face
surface of the nitrided tool (Fig. 5a). The tools after
hardfacing (Fig. 5b) and the tools coated with Cr/CrN
(Fig. 5c) did not undergo either abrasive wear or
plastic deformation, despite the similar operating

conditions; however, cracks propagating on the
surface of the hybrid layer were visible.

In turn, a fine mesh of cracks (probably caused by
thermomechanical fatigue) is visible throughout the
entire surface of the tool coated with an AlCrTiN layer
(Fig. 5d), while slight abrasion and deformation were
visible at the edge of the face surface and the side
surface. Based on the observations, it can be surmised
that the layers applied to the tools- regenerative
hardfacing (Fig. 5b) and Cr/CrN layer (Fig. 5c),
fulfilled their protective role and limited the influence
of destructive mechanisms.

3.1.2 Geometrical analysis of material loss using
laser scanning

An analysis of the tool wear (geometrical loss in
the normal direction to the surface) was conducted
based on scanning with the Romer Absolute Arm
measuring arm in the PolyWorks software. The arm
makes it possible to perform classical measurements
by means of an additional measuring probe as well as
contactless measurements by means of an RS3 linear

laser scanner integrated with the arm, which provides
the capability of collecting up to 460,000 points/s for
4600 points on a line at the linear frequency of 100 Hz
with the declared 2-sigma accuracy of 30 μm. After
the measurement, a shape and dimensional analysis
was conducted based on the best-fit algorithms [7].
The results of the analyses employing images (scans)
are presented in Figure 6.

On this basis, the degree of wear was determined,
i.e. the material loss in the normal direction, which
was the greatest in the face part for the majority of
tools (except for the hardfaced tool), equalling from
approx. 1mm (for the nitrided tool) to nearly 2mm (for
the tools with the CrN layer and AlCrTiN layer).
Among the tools presented and analyzed in Figure 6,
only the tool with the AlCrTiN layer was not suitable
for further production due to deep grooves
propagating locally up to the radius – which
disqualifies such a tool, since the flat face part on the
forging is machined after the process. Of course, for
the purposes of building the database, tools after
different numbers of forgings (even up to 13000) were
also analyzed. Also, the tools were additionally
divided into a greater number of areas (Fig. 7a).

3.1.3 Microstructural investigations of tools’
surface layer

For the purpose of a more complete analysis of the
changes occurring in the surface layer of the tools,
advanced microstructural investigations were
conducted by means of an Olympus GX51
microscope and a TESCAN VEGA 3 scanning
electron microscope, where attention was paid to the
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Figure 5. Macro view of the face part of analyzed tools
after manufacturing approx. 4000 forgings: a)
after nitriding, b) after pad welding, c) with
Cr/CrN layer, d) with AlCrTiN layer  

Figure 6. Comparison of changes in tool geometry after
manufacturing of 4000 forgings based on
scanning results: a) nitrided, b) hardfaced, c)
Cr/CrN, d) AlCrTiN  

Figure 7. SEM and light microscopy investigations of the
surface layer of the tool with Cr/CrN coating in
selected subareas: a) division of the tool into
elementary areas, b), c), d), f) photographs of
microstructure in selected areas of the tool [10]  

a) b) c) d)

a)

b) c)

d)

e)

f)



presence of the nitrided layer, the PVD layer, cracks
and plastic deformations. Examples of the test results
along with photographs of the microstructure of the
tool coated with one of the Cr/CrN type layers are
presented in Fig. 7. The tool was plasma-nitrided, and
a homogeneous PVD coating built from chromium
nitride (CrN) was applied, with the mean initial
thickness of 7.2 μm and the hardness of 2100±140
HV. The observations show that the nitrided layer was
preserved nearly on the entire tool, and its visible
depth is 55÷65 μm. This is due to the presence of the
PVD coating, which maintained cohesion with the
substrate and was not chipped even on the face
surface P1 (Fig. 7b and 7c). The coating's adhesion is
perfectly illustrated by photo 7d, where the coating
was not detached, despite the strong deformation of
the surface layer. Thinnings of the coatings are visible
on the surfaces (Fig. 7d and 7e), interpreted as
abrasive wear, which is the most intensive, since the
CrN coating has the lowest hardness among the
applied coatings. However, the coating is not
removed, since the losses are primarily within the
range of 3÷5 μm.

Based on the microstructure observations, it can
be stated that the hybrid layer remained nearly on the
entire surface of the tested tool at the early stage of
operation, up to 4000 forgings.

3.1.4 Microhardness measurements

For a more complete analysis, microhardness
measurements were also performed, with the
microhardness measured as a function of the distance
from the surface. The microhardness was measured
according to the Vickers method under 100g load by
means of a LECO LM-100AT hardness tester, at
several points distributed over a 2.5 mm segment into
the material. The results are presented on charts (Fig.
8), which compare the tested tools in each of the 5
areas given in Fig. 7a. Examples of the HV
microhardness distributions on the cross-section of
the tools in area R2 and area P3 are presented in Fig.
8. The charts presented in Fig. 8 show that, essentially,
all the analyzed tools partially maintained the effect of
elevated hardness (except for the hardfaced tool) in

the surface layer during the operation, due to the
presence of the nitrided layer. This is particularly
visible in area R2, except for the hardfaced tool,
where its hardness is even lower (Fig. 8a).
Meanwhile, in area P3, only the tool with the nitrided
layer and the AlCrTiN coating continues to exhibit
elevated hardness.

Both the tools with the nitrided layer and the
AlCrTiN coating are more resistant to abrasive wear.
Meanwhile, a decreased hardness was observed in the
tool with the Cr/CrN layer, which is decidedly more
resistant to thermal fatigue. The case is similar for the
tool after regenerative hardfacing, which exhibits
constant hardness throughout the entire hardfaced
zone.

3.1.5 Numerical modeling

In order to determine the parameters which are
difficult to find experimentally or impossible to
determine by other methods, numerical modeling was
applied. The numerical simulations were performed
based on FEM in the Marc Mentat program, dedicated
to the modeling of plastic working processes. The
forging operation of the analyzed tool – a forging
punch used in the second operation - was modeled in
an axially symmetrical deformation state for the most
complex thermo-mechanical model. The geometry of
the tools and the initial material, as well as the
remaining technological parameters of the process,
were entered into the program on the basis of the
original CAD models and the data provided by
Kuźnia Jawor S.A. The data of the material of the
forging and the tools was taken from the Matilda
materials base. The SHEAR bilinear friction model
was applied, and the friction coefficients between the
dies and the deformed material were accepted to be
0.35. The initial uniform billet temperature was 1150
℃ and the initial tool temperature was 250 ℃. In the
numerical modeling, the surface layers (hybrid and
nitriding) were not included. The simulations were
carried out for standard tools after heat treatment. A
FEM punch analysis was conducted in order to
determine: the normal contact stress (Fig. 9a) and the
temperature distribution on the punch (Fig. 9b), since 
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Figure 8. HV microhardness distribution on the cross-section of tools in area: a) R2, b) P2  



it is known that they have a decisive influence on the
tool life. The simulation of the forces and the
temperature points to a diversified intensity of the
degradation mechanisms affecting the tool wear. The 

normal contact stress values were observed in the
vicinity of the ejector hole, where they reached the
values of up to 1200 MPa.

Their mean values were in the range of 600-800

M. Hawryluk and B. Mrzyglod / JMM  54 (3) B (2018) 323 - 337 329

Figure 9. Contact normal stress [MPa] on the contact surface of the filler and the forging: a) general view (left) and
longitudinal section (right), b) temperature of the filler in the lower dead centre of the press slide: 3D image (left)
and longitudinal view (right)  

Table 3. Part of the developed database

number of
forgings  

pressure/
MPa

temperature/
oC

path of
friction/

mm 

type of surface
layer layer label

material
loss/

thermo-
mechanica
l fatigue/

%

abrasive
wear/

%

plastic
strain/

%

mechanical
fatigue/

%        mm

7000 1900 692 21 GN/ AlCrTiSiN 5 0.85 0.3 0.5 0.2 0
7000 1223 580 10 GN/AlCrTiSiN 5 0 0.9 0.1 0 0
7000 1028 473 1 GN/AlCrTiSiN 5 0 1 0 0 0
7000 906 617 20 GN/AlCrTiSiN 5 1.3 0.5 0.4 0.1 0
8000 1730 688 21 GN/AlCrTiN 4 2.9 0.2 0.6 0.2 0
8000 1072 570 10 GN/AlCrTiN 4 0 0.9 0.1 0 0
… … … … … … … … … … …

3000 832 544 11 GN/AlCrTiN 4 0.15 0.3 0.5 0.2 0
5100 937 453 1 GN/AlCrTiN 4 0 1 0 0 0
5100 832 544 12 GN/AlCrTiN 4 0.75 0.3 0.6 0.1 0
1500 1821 689 21 GN/AlCrTiSiN 5 0 0.9 0.1 0 0
1500 1141 572 10 GN/AlCrTiSiN 5 0 0.95 0.05 0 0
1500 937 453 1 GN/AlCrTiSiN 5 0 1 0 0 0
1500 832 544 11 GN/AlCrTiSiN 5 0.1 0.7 0.2 0.1 0
8000 1821 689 21 GN/AlCrTiN 4 0.9 0.2 0.7 0.1 0
8000 1141 572 10 GN/AlCrTiN 4 0 0.9 0.1 0 0
8000 937 453 1 GN/AlCrTiN 4 0 1 0 0 0
8000 832 544 12 GN/AlCrTiN 4 0.45 0.6 0.3 0.1 0
5000 1821 689 21 GN/AlCrTiSiN 5 0.6 0.5 0.4 0.1 0
4000 832 544 11 GN/AlCrTiSiN 5 1.1 0.4 0.5 0.1 0
7000 1730 688 21 GN/CrN 3 0.15 0.9 0.1 0 0
7000 1072 570 10 GN/CrN 3 0 0.9 0.1 0 0
7000 868 447 1 GN/CrN 3 0 1 0 0 0
7000 742 518 10 GN/CrN 3 0.45 0.4 0.5 0.1 0
…. …. …. …. …. …. …. …. …. …. ….



MPa. The further away from the tool axis, the lower
the forces and the temperature, which points to the
fact that the most difficult conditions are present in
the central part of the front surface, and this is where
the wear should start to occur. The temperature value
at the level of 550 ºC corresponds to the tempering
temperature of WCL steel, from which the dies were
made, which may cause local tempering in the case of
prolonged contact with the forging, whereas
periodical changes of temperature may cause thermal
fatigue on the tool surface. In consequence, this can
also lead to plastic deformation in these areas. The
lowest temperature values occur on the radius of the
rounding of the tool, where the contact with the
formed forging is the shortest.

Detailed information on the subject of the
conducted tests has been given in earlier publications
by the authors [5-10], based on which an extensive
database was developed, from which the results for
the analyzed cover forging process were selected.
Table 3 presents a part of the developed database.

3.2 Results of the 2nd stage of research -
developing a model of neural networks

With the integrated knowledge of the selected die
forging process contained in the developed database,
attempts can be made to construct algorithms and
inferencing systems enabling automatic processing of
this knowledge. As a consequence of this, it is
possible to build computer systems which provide the
possibility of creating new knowledge without the
need to perform additional material experiments. 

The obtained source data served as training data
for the artificial neural networks, which were selected
as the formal tool describing the tested phenomenon
[24]. 

3.2.1  Development of the model of neural
networks determining geometrical loss

The process of selecting the networks’ architecture
and parameters was realized in multiple stages. It was
initially assumed that all the selected dependent
variables (number of forgings, temperature, pressure,
path of friction, type of surface layer - Fig. 4) will be
treated as the input parameters of the network, which

will determine the value of geometrical loss in mm on
the output. The general scheme of the neural network
accepted at the beginning of the studies is presented in
Fig. 10.

Several hundred architectures were tested, with
different numbers of neurons in the hidden layer and
with different activation functions in the hidden and
output layer. Among all the tested networks, the best
learning and testing parameters were displayed by the
MLP 5-13-1 single-layer network with 5 input

neurons, 13 neurons in the hidden layer, and one
neuron in the output layer. The quality parameter
values of the developed network for individual sets
(learning, test, validation) are presented in Table 4.

The Pearson's linear correlation coefficient (R2)
determined from formula (1) was equal to 0.78, and
the mean square error determined from formula (2)
for the test set was equal to 0.065.

(1)

where:
yi - actual observed value,

- theoretical value of output variable determined
on the basis of the model,

- arithmetic mean of empirical values of the
output variable. 

(2)
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Figure 10. General scheme of the adopted neural network

neural
network
architec

ture

R2 MSE

Learning
set Test set Validation

set
Learning

set Test set Validat
ion set

MLP 5-
13-1 0.809 0.789 0.859 0.049 0.065 0.031

Table 4. Quality parameters of MLP 5-13-1 network
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Figure 11. Correlation chart prepared on the basis of the
observation results and the test results
generated based on the MLP 5-13-1 network
model



A correlation chart prepared on the basis of the
observation results and the test results generated
based on the MLP 5-13-1 network model is presented
in Fig. 11.

The tests which followed demonstrated that the
removal of the type of surface layer input variable and
the development of 4 separate neural networks
determining the geometrical loss for each type of
layer decidedly improved the model's parameters.
Four neural networks determining the material loss in
the tools with hybrid layers {GN/CrN, GN/AlCrTiN}
as well as the tools after nitriding and the hardfaced
(pad welding) tools were developed.

Presented above are the results referring to the
quality of the parameters of the developed network
models, both for the whole network -MLP 5-13-1
(Tab. 4) and for separate networks elaborated to
determine the wear of the tools enriched with the
particular surface layers (Tab. 5). For each of the
above networks, a detailed analysis of the training,
testing and validating data was performed. The
presented tables show the results of the quality
parameter analysis (R2, MSE) for all the sets, i.e. the
training, validating and testing set of the developed
networks. At the network's learning stage, the training
set was used, which constituted 70% of all the
obtained source data. The testing set constituted 15%
and was used to control the course of the network's
learning process by way of verifying the extent of the
neurons' training. The remaining 15% of the indutrial
source data were the validating data, to which the

network had no access during its learning process and
which were applied to validate the developed
networks. The obtained results, presented in Tables 4 
and 5, point to relatively good results of both  R2 and
MSE for the whole architecture, as well as for the
particular netwoks. What is more, in all the cases, the
best results were obtained for the validating data. This
suggests that the presented network models and
architectures were developed in the appropriate way.
Additionally, from among the many elaborated
network models, those were selected for which the
preliminary analyses showed the best matching. Of
course, for the quality parameters of the developed
model networks, the crucial issue is the quality and
number of the input data, obtained from the database
elaborated based on the source data from the
industrial process. In turn, as it can be noticed e.g. in
the diagrams in Fig. 15a (the case of 500 MPa) and
Fig. 16b (the case of 1000 MPa), in the results
obtained from these networks, certain courses appear
which are difficult to explain. This can be a result of
an insufficient number of input data and the presence
of "empty" areas in the database. Finally, the results
for the desiged and elaborated network models
presented in this chapter confirm the high quality of
the network parameters.

3.3.2 Results generated by network for input
starting conditions

The developed neural networks were used to 
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Table 5. Quality parameters of neural networks determined for each analyzed surface layer

Type of
surface layer

neural
network

architecture

Learning
algorithm

Activation
(Hidden)

Activation
(Output)

R2 MSE

Learning
set

Test
set 

Validation
set

Learning
set

Test
set 

Validation
set

nitriding MLP 4-12-1 BFGS 170 Exponential Exponential 0.957 0.891 0.874 0.014 0.056 0.031

pad welding MLP 4-5-1 BFGS 41 Exponential Exponential 0.967 0.993 0.956 0.008 0.001 0.004

GN/CrN MLP 4-13-1 BFGS 78 Tanh Linear 0.9 0.816 0.923 0.017 0.021 0.032

GN/AlCrTiN MLP 4-5-1 BFGS 126 Exponential Linear 0.918 0.838 0.882 0.03 0.069 0.063

Figure 12. Correlation charts prepared on the basis of observation results and results generated on the basis of developed
network models: a) ANN-1 (nitriding layer), b) ANN-2 (repair welding layer), c) ANN-3 (GN/CrN), d) ANN-4
(GN/AlCrTiN layer)



conduct wear simulations of tools with different
surface layers. Presented below are exemplary results 
obtained from the developed ANN simulations for
specific process conditions:

The simulations were conducted at the constant
process temperature of 500℃ and under different
pressures (500, 600, 700, 1000 MPa). Figures 13-16
present the wear results for the tools with the given
surface layer working under the aforementioned
conditions, for the path of friction accepted to be
equal to 1 mm (Figures 13a-16a) and 10 mm (Figures
13b-16b).

In the case of the application of the nitrided layer
on the tools (Fig. 13), it can be observed that the effect
of the pressure value cannot be seen for a short path of
friction (Fig. 13a), which may point to the fact that a
destructive mechanism other than that of abrasive
wear is dominant in these areas during the forging
process, which is most likely thermal or
thermomechanical fatigue. Meanwhile, for a longer
path of friction, equal to 10mm (Fig. 13b), it can be
seen that the pressure value has a proportional effect 

on the size of the material loss. This indicates that
abrasive wear was dominant in these areas, which is 
consistent with the Archard’s model. In both cases, i.e.
for short and long paths of friction, the material loss
curves grow logarithmically. The greatest loss values
were observed for the path of friction of 10mm and
the pressure of 1000 MPa, where the material loss
reached over 2mm.

The effect of the pressure value is small in the case
of the hardfaced tools (Fig. 14), for both the 1mm
(Fig. 14a) and 10mm (Fig. 14b) path of friction. The
maximum loss has the value of slightly over 1.4mm
for all the pressure (from 500 to 1000 MPa) and path
of friction values, and for the maximum number of
forgings equal to 7000. Analogically, the maximum
loss for the 10mm path of friction has the value of
approx. 1.6mm. In the macro- and micro-structural
investigations of the hardfaced tools, this variant of
surface engineering was characterized by stable
properties since the hardfaced layer is much larger
(deeper) in comparison to the other applied surface
treatments.
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Figure 13. Determination of wear (geometrical loss) for nitrided layer, a) T=500, path of friction=1, b) T=500, path of
friction 10 mm

Figure 14. Determination of wear (geometrical loss) for hardfaced layer, a) T=500, path of friction=1, b) T=500, path of
friction 10 mm



No significant effect of the pressure was observed
in the case of the tools with the GN+CrN layer for the
short path of friction (Fig. 15a), except for the greatest
pressure value equal to 1000MPa. This indicates that, 
in the case of the absence of movement of the
deformed material, the CrN layer plays the role of a
good insulator against thermal fatigue, which was
confirmed in the case of the short path of friction.
Meanwhile, a high pressure value for a greater
number of forgings could have caused the data input
into the system to include such information, and thus,
the material loss is observed only for a single
value.This result obtained from the network for such
variant (1000 MPa) is difficult to explain in another
manner. Therefore, it is necessary to expand the
database so as to fill the missing areas with which the
developed network model is not able to cope. In the
case of the longer path of friction equal to 10mm, it
can be seen that a relatively rapid growth of the
material loss occurs, starting from about 9000
forgings (Fig. 15b). Additionally, this growth begins
somewhat earlier under the pressure of 1000 MPa 

than under pressures with other values. For the final
layer among the applied hybrid layer variants, the
obtained results indicate a relationship with the
pressure value. This relationship is more visible for
the short path of friction (Fig. 16a) than for the long
path p=10mm (Fig. 16b). Meanwhile, the maximum
loss values for the short path of friction are approx.
0.25mm, and the maximum loss for the 10mm path of
friction reaches above 1.2mm. Moreover, the material
loss appears earlier and for a lower number of
forgings (approx. 3000) for the short friction path than
for the long friction path (Fig. 16b), for which the
material loss begins to grow starting from about 4000
forgings. It is probably also the result of the lack of
data for these values, and the developed network
attempts to approximate the curve on this basis. The
obtained results point to high dependence of the
network (system) on the input learning data; however,
the obtained results are correct and consistent with the
results obtained from the industrial process.

The simulations were conducted at the constant
process temperature of 500℃ and for different paths 
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Figure 15. Determination of wear (geometrical loss) for GN/CrN layer, a) T=500, path of friction=1, b) T=500, path of
friction 10 mm

Figure 16. Determination of wear (geometrical loss) for GN/AlCrTiN layer, a) T=500, path of friction=1, b) T=500, path
of friction 10 mm



of friction in mm (5, 10, 15, 20). Figures 17- 20
present the wear results for the tools with the given
surface layer working under the aforementioned
conditions, under the pressure of 500 [MPa] (Figures
17a- 20a) and 700 [MPa] (Figures 17b-20b). 

In the case of the application of the nitrided layer
on the tools (Fig. 17), it can be observed that the
material loss increases nearly proportionally up to
approx. 12000 forgings as the path of friction
increases (from 5 to 20mm), regardless of the pressure
value. However, above this number of forgings, the
shorter the path of friction, the earlier the loss begins
to increase exponentially. A dynamic growth of the
material loss under the pressure of 500 MPa and for
the path of friction p=5mm (Fig. 17a) is the most
noticeable change. Moreover, with lower pressure
values (N=500 MPa), the maximum material loss for
the longest path of friction p=20mm reaches the value
of 1.6mm. Meanwhile, the loss value is over 2.5mm
for the pressure (N=700 MPa - Fig. 17b) and the
longest path of friction p=20mm.

In the case of the results for the second variant –
the tool after hardfacing (Fig. 18) - no significant
changes are visible in the evolutions of the loss curves
as a function of the number of forgings, even for
different pressure values. It can only be observed that,
for the greater pressure value (N=700MPa), the 

obtained loss evolutions are slightly higher for a
larger number of forgings than in the case of a lower
pressure value (N=500 MPa).

Also in the case of the application of the GN+CrN 
layer, a similar tendency can be observed to that of the
layer after hardfacing, i.e. no clear difference can be
seen in the loss values as a function of the pressure
value. Only the decidedly greater influence of longer
paths of friction (15 and 20mm) is deserving the
attention for both pressures, where the material loss
appears at a very low number of forgings in the case
of the longest path of friction p=20mm, and at the
maximum number of forgings, equal to 12000 pieces
for this layer, the material loss for both pressure
values is at the level of 4mm (Fig. 19 a and Fig. 19b).

Meanwhile, for the last of the analyzed layers
(Fig. 20), a clear effect of the path of friction on the
loss can be seen for both pressure values (N=500 MPa
and N=700 MPa). In the analysis of the influence of
the pressure value, it can be seen that the loss is at a
level of nearly 1.5mm for 12 and 20mm paths of
friction under the pressure N=500 MPa, and the loss
increases up to 1.7mm for the pressure N=700 MPa.
The clear effect of the path of friction on the material
loss can be explained by the insufficient resistance of
this layer to abrasive wear at elevated temepratures,
which was also observed in the operational tests under
industrial conditions.
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Figure 17. Determination of wear (geometrical loss) for nitrided layer,  a) T=500, pressure=500[MPa] , b) T=500,
pressure 700[MPa]

Figure 18. Determination of wear (geometrical loss) for hardfaced layer,  a) T=500, pressure=500[MPa] , b) T=500,
pressure 700[MPa]



4. Summary and conclusions

This paper presents the possibilities of building a
decision support system predicting the durability of
forging tools, with particular emphasis on the loss of
the tool material in the direction normal to the surface,
colloquially called wear. It should be emphasized that,
in the majority of cases, the material loss is dependent
on multiple destructive mechanisms (occurring at
different times and with different intensities).
Meanwhile, the results obtained from the developed
system concerning the tool material loss, are only
equivalent to the value of abrasive wear within a
given area in a few cases. An analysis of the causes of
the resultant loss and identification of the destructive
mechanism responsible for it as well as its extent, will
be the subject of future publications by the authors. 

Artificial neural networks (ANN) were used to
determine the model of the phenomenon, for which
the source of learning data was the developed
extensive, cumulative database of test results
(operational, material and simulation), focused on the
selected forging tools, i.e. upper fillers used in the 2nd
hot forging operation of a cover-type forging. The
dataset used for learning of the network contained 900 

cases originating from the conducted experimental
studies and computer simulations. 

The obtained results show that by parameterizing
factors significant to the forging process, it is possible
to create a system predicting the value of geometrical
loss on the tools.  The prediction of the extent to
which a given tool will be worn, under the assumed
parameters of its operation, is a very complex process,
which is difficult to design; however, it provides
valuable information about whether a forging falls
within the shape and dimensional tolerances after the
material loss.

The collected source data and the neural networks
developed on its basis make it possible to achieve this
with the error of estimation at the level of approx.
10%, which is a satisfactory result considering the
complexity of the problem. Further work intended to
improve this model will be related to the process of
optimizing the network and introducing a larger set of
learning data acquired from new experimental data. It
is also planned to undertake a much greater challenge
involving the prediction and analysis of the results for
the main destructive mechanisms. 

Considering the differences observed in the
material loss on individual tools under different

M. Hawryluk and B. Mrzyglod / JMM  54 (3) B (2018) 323 - 337 335

Figure 19. Determination of wear (geometrical loss) for GN/CrN layer,  a) T=500, pressure=500[MPa], b) T=500,
pressure 700[MPa]

Figure 20. Determination of wear (geometrical loss) for GN/AlCrTiN layer, a) T=500, pressure=500[MPa], b) T=500,
pressure 700[MPa]



operating conditions, it can be accepted that the
developed system provides correct results, logically
justified in the industrial forging process. The fact that
the results obtained by the system were verified and
positively assessed by experts should also be
emphasized.

The results presented in this paper are clearly
applicational in their nature, because the appropriate
methods of preventive measures enabling an
extension of the operating lifetime of forging tools
can be used on the basis of the presented analyses.   
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SISteM AnAlIze I predvIđAnJA guBItkA MAterIJAlA AlAtA zA
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Apstrakt

U ovom članku je predstavljena upotreba veštačkih neuronskih mreža (ANN) da bi se napravio sistem za analizu i
predviđanje izdržljivosti alata za kovanje, kao i sticanje izvora znanja neophodnih za proces proučavanja mreža. Ova
studija je fokusirana na predviđanje geometrijskog gubitka materijala alata posle različitih varijanti tretiranja površina.
Takođe je predstavljena metodologija razvoja modela neuronskih mreža i njihovih parametara kvaliteta. Korišćene su
standardne jednoslojne MLP mreže čiji su parametri kvaliteta bili na visokom nivou, i rezultati koji su dobijeni su
zadovoljavajući i u skladu sa tehnološkom praksom. Podaci korišćeni u procesu učenja dolaze iz opsežnih ispitivanja
performansi alata za kovanje u ekstremnim uslovima za rad (ciklična mehanička i termička opterećenja). Izvršena je
parametrizacija faktora važnih za odabrane procese kovanja i razvijena je baza podataka, uključujući i 900 vektora znanja
od kojih je svaki davao informaciju o veličini geometrijskog gubitka materijala alata (objašnjene varijable). Vrednost
habanja određena je za utvrđene vrednosti eksplanatornih varijabli kao što su: broj kovanja, pritisak, temperatura na
odabranim površinama alata, linija trenja, kao i varijanta primenjenog tretiranja površine. Rezultati dati u ovoj studiji,
potvrđeni od strane stručnjaka iz oblasti tehnologije, imaju jasno primenljiv karakter jer se na osnovu predstavljenih
rešenja može odabrati optimalan postupak i mogu se primeniti odgovarajuće preventivne mere, što će produžiti radni vek
alata.
Ključne reči: Sistem za podršku odlučivanju; Izdržljivost alata za kovanje; Veštačke neuronske mreže; Gubitak materijala;
Habanje


