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Abstract

Based on the two-mode phase field crystal (PFC) model and the principle of the common tangent, a two-dimensional PFC
phase diagram is established. According to the phase diagram, the parameters for a steady growth of the hexagonal and
the square phase are found. Moreover, the nucleation and growth characteristics of the square phase from hexagonal phase
under different pressures are simulated by using these parameters. The movements of dislocation core under pressure at
different transformation stages are revealed and compared with each other. Finally, by changing the grain orientation, the
formation and disappearance of grain boundaries at different angles are simulated and analyzed.
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1. Introduction

Materials under different heat treatments will lead
to different microstructure, and the microstructure,
such as the size, distribution and orientation of grain,
as well as interfacial structure etc., determines the
comprehensive mechanical properties of the material.
As an independent physical parameter besides
temperature, pressure can induce structural transition
and lead to the formation of new high pressure
structure, which provides an effective method to
explore new structure, new property and new
phenomenon. However, in contrast to temperature
induced transition, except for a few low pressure
researches, the experimental investigation employing
high pressure is limited. For example, the higher
pressure research in VO, (M1) [1] and the research
on other initiating structure is unavailable [2].
Therefore, the detail of high-pressure structural phase
transitions in micro and nano size scale is still not
very clear. Just like that although it is known that the
phase transition process usually includes nucleation
and growth, it is a challenge to directly observe
atomic migration trajectory under high pressure
experimentally.

With the rapid development of computer
technology, numerical simulation has become an
important tool in materials science. Among the
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available models, the traditional phase-field method
has recently emerged as a powerful numerical method
for studying the evolution of microstructure. For
example, Yang et al. predicted the kinetic phase
diagrams in the Si-As system by using the phase-field
simulation with the time-elimination relaxation
scheme [3]. Uehara [4] proposed a phase field model
for predicting deformation behavior under an applied
stress. Furthermore, through phase field simulation,
Mamivand et al. [5] showed that external stress favors
the formation of monoclinic variants, which exhibit
transformation strains aligned with the applied stress
direction. These successfully applied phase-field
methods, however, neglect the periodic arrangement
of atoms [6-9]. Consequently, it is difficult to reflect
the structural characteristics of the crystal structure
and atomic scale behavior of materials by means of
the traditional phase field method.

Recently, the phase field crystal (PFC) method
established by Elder et al. has emerged as an attractive
computational approach to simulate the evolution of
crystalline patterns [8-15]. Crystal morphology varies
observably with the ordering condition, encompassing
the faceted structures to symmetric dendrites, which
in turn produces an equally diverse range of physical
properties [10, 11]. The PFC model proposed by Elder
et al. is based on classical density functional theory,
which introduces a sequence-local atomic density
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field function containing periodic characteristics. The
atomic density field of the liquid phase is a constant
value, while the density field of the solid phase is
expressed as a periodic function (wave) and the lattice
structure of the crystal is expressed by the atomic
density function of the period. It is natural to closely
relate to the physical properties produced by the
periodic structure to the related microstructure
feature, such as the elastic effect, the grain orientation
and the movement of the dislocations [12-15].
Following Elder et al.’s work, Greenwood et al.[10]
introduced a new particle association function based
on the density functional theory and constructed a
PFC model for the transformation of the square phase
structure. On the other hand, Wu et al. [16] proposed
a two-mode PFC model which can describe a more
complex crystal lattice structure than previous PFC
model, including square lattice, face-centered cube
(FCC) lattice etc.. The two-mode PFC provides a new
strategy for the study of complex lattice
transformation.

The PFC model, which is based on classic density
functional theory, can be used to simulate the
dynamics of microstructural evolution from atomic
scale, just like molecular dynamics (MD) simulations.
Moreover, one of the advantage of PFC over MD is
that PFC model usually applied in the scale of
diffusion time [16]. At present, however, the effect of
pressure on microstructure transition has not been
systematically studied by two-mode PFC method.
Since choosing a suitable pressure is important for
regulating microstructure, it is meaningful to study
the effect of pressure on grain nucleation and growth
at atomic scale and diffusion time scale with two-
mode PFC method.

In this work, the effect of applying different
pressure on the transformation from hexagonal phase
into the square phase is studied systematically. In
addition, the influence of pressure on the early stage
of hexagonal phase formation, growth period of
square phase and the corresponding structural
transformation are analyzed. The outline of this paper
is as follows. Firstly, the two-mode PFC model is
described in Section 2. Then, the effect of pressure on
the precipitation and growth of the square phase was
discussed in Section 3. Besides, the effect of pressure
on grain boundaries at different angles was studied.
Finally, the conclusions resulting from the present
work are presented in Section 4.

2. The phase field crystal model and simulation
description
2.1 The free energy function

Like classical density-function theory (DFT), the
PFC method is based on representing the free energy
of a material by a functional of its density field. In this

work, a “two-mode” phase-field-crystal model is
used, which starts the free energy functional as:

—r+ (V2 +1)* x 4
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where n and r represent dimensionless atomic
number density and temperature parameter,
respectively. In addition, the relative amplitudes of
those density waves can be varied by varying R|. Q, is
a coefficient which represents the ratio of second
Brillouin district and first Brillouin one. With the
decrease of R value, the model will approach to the
two-mode approximation gradually. In order to
simulate the square phase, two characteristic
parameters (R =0, Q, =2 ) are fixed. Thus the free
energy density function F, for square phase can be

written as follows
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2.2 Kinetic equation

As a conserved order parameter, the temporal
evolution of the atomic number density field n obeys
the following Cahn-Hilliard equation [17]:

0 _v:0h . 3
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where & represents Gaussian random noise and the
effect of this term on the first degree of n is ignored in
this work. The PFC dynamic equation is established
by inserting Eq. (2) into Eq. (3):
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The Fourier method is used to deal with the
boundary conditions. The Laplace operator can be
effectively processed by Fourier spectra. In this study,
semi-implicit pseudo-spectral method was selected.
The discrete form of kinetic equation shown in Eq. (3)
is as follows:
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In order to facilitate the calculation, we further

organize the above formula as:
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where 7 is the expression obtained by the Fourier
transform of the atomic density field n, and k is the
Fourier space wave vector.

nk,r+At =

2.3 Calculation detail
To examine the equilibrium properties of this two-
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mode PFC model, we construct the phase diagram,
which is obtained by computing the free-energy
density as a function of the mean density n, in solid
and liquid. The free energy curves of the square phase
are calculated using the two-mode approximation of
the density fields:

27G, ;7
n= ZA,.)je +n, @)

where G is the reciprocal vector, r is the spatial
position vector, and 4, ; is the Fourier coefficient. The
first term in Eq. (7) reflects the structural
characteristics associated with the periodic
arrangement of the lattice atoms, and the second term
is a constant reflecting the mean atomic density of the
disordered phase.

The two-dimensional PFC model can be used to
represent different phases such as liquid, stripe,
hexagonal and square. In order to establish two-
dimensional PFC phase diagram, the free energy of
each phase was calculated. The appropriate
expression of the atomic density function is found,
which inserts into its free energy to find the suitable
form. The two-dimensional PFC phase diagram is
then obtained according to the comment tangent of the
free energies.

In the case of a single mode PFC model, the liquid
phase, stripe and hexagonal phases are represented as
follows [18, 19].

The liquid phase:
n=n, =n, ®)
The stripe phase:
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The hexagonal phase:
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For the two-mode PFC model, the square phase is
described by an equation of the form[20]:

iG, ;7
n=mn, +ZA,.Je !

=n,+2A,(cosq,x+cosq,y)+ (1n
+4B cosq,xcosq,y
These density functions will be brought into their
respective free energy functions for the integral
operation, during which the expression of the free
energy function will be solved as:

The liquid phase:
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2.4 Construction of a phase diagram

The equilibrium of the two phases should meet the
conditions of chemical equilibrium, thermal
equilibrium, and mechanical equilibrium. Thus, it
requires that in the two-phase region, the chemical
potential, temperature and pressure are equal. Under
such conditions, the two-phase coexistence region can
be found. Specifically, pressure can be considered as
a unit of volume of the giant thermal potential. If the
giant thermal potential is equal, pressure will be
identical. Besides, it should meet the conditions that
temperature is equal at (n,, r) point. Therefore, the
chemical potential and the giant thermal potential
should be equal too. Based on the principle of
common tangent, the two-dimensional PFC phase
diagram is calculated and plotted by using Eqgs. 12-15,
and the results are shown in Fig. 1.

3. Results and discussion
3.1 Structure transformation at zero pressure

Materials may show different microstructures
under different environments. In this work, a set of
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Figure 1. Phase diagram of the two-mode PFC model for
R, =0 computed using two-mode and one-mode
expansions of the crystal density field for square
and hexagonal phase, respectively. The light blue
part represents the two-phase coexistence zone.

samples under normal pressure were prepared with
PFC simulations. The point (n,,r) = (0.21, 0.15) in the
established two-mode PFC phase diagram is selected.
As show in Fig. 1, this point is in the region where the
square phase grows steadily and the liquid and
hexagonal phases are metastable. In order to speed up
the nucleation of the process, a few random nuclei
were selected. The corresponding parameters are
listed in Table 1. Except for the nuclei, the other areas
are set to be liquid phase, as shown in Fig. 2a.

Table 1. Dimensionless sample initialization parameter.

No. 1 2 3 4 5 6 7 8

radius 8 | 10 | 14 | 16 | 20 | 21 | 30 | 35

angle 30 | 60 | 55 |22.5] 40 | 58 | 45 | 63

The nuclei and growth processes of the hexagonal
phase are shown in Fig. 2. The hexagonal grains are
nucleated in the liquid phase (Fig. 2a). As time
evolves, the grains grow slowly until they come into
contact with other hexagonal grains (Fig. 2b). At this
time, if the angle of orientation of the hexagonal phase
before contact is large, the grain boundary will be
formed. If the orientation angle difference is small,
the grain boundaries will then merge, resulting in the
passive formation of some dislocations.

When the evolution time reaches 15000 time
steps, the nuclei of square phase are generated at the
grain boundary of hexagonal phase. At the
intersection of the three grains, the nuclei of square
phase appeared at the fastest speed. Moreover, the
square phase is more stable under the condition of the
set parameters, which will devour the hexagonal
grains and grow slowly. At the 42000 time steps, the

Figure 2. Dynamical evolution of the original sample
microstructure (a) sample at t=0; (b) sample at
=6000; (c) sample at =15000; (d) sample at
t=42000.4: hexagonal phase; B: square phase.

entire areca has been occupied by the square phase,
meaning that the phase transformation process has
completed. There are still dislocations in the grains
boundary, which are shown in Fig. 2(d). Overall, it is
observed that the new phases tend to be preferentially
nucleated at the intersection of the three grains. While
a small difference in grain orientation will lead to the
formation of a small angle grain boundary. In
addition, the hexagonal to square structure evolution
simulated by PFC model is similar to that results from
the molecular dynamics method. The free energy
minimization curve during the transition process is
shown in Fig. 3. The abscissa indicates the evolution
time, and the fir coordinates represent the energy
density. Each ladder represents a relatively stable
state, the turning point represents the formation of the
new phase or the disappearance of the previous phase.
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Figure 3. The energy curve of the sample.
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3.2 Structure transformation at elevated
pressures

To reveal the impact of pressure on structural
transformation, the samples at the beginning of the
present PFC simulation are the same as those used at
section 3.1. In order to prevent the overpressure of the
model from breaking, the pressurization process will
be controlled gradually within 4800 steps. Therefore,
the largest deformation is 4.8% when the
pressurization process is completed.
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Figure 4. Dynamic evolution of microstructures of the
pressurized samples and the energy curve (a)
sample at =10000; (b) Pressurized sample at
t=10000; (c) sample at t=15000; (d) Pressurized
sample at t=15000; (e) The energy curve of the
pressurized

3.2.1 Pressurized at the early stage

To demonstrate the effect of pressurization on the
quadratic nuclei visually, the first pressurization
experiment is conducted before the quadratic nuclei

and the hexagonal phase cover the region. The
pressure was applied for 24 times and changed by
0.2% for each time. The results of the pressurization
are shown in Fig. 4.

By comparing the simulation results under high
pressure (Fig. 4 ¢ and d) with zero pressure (Fig. 4 a
and b), it can be found that the nucleation rate of the
square phase can be enhanced remarkably by applying
a certain amount of deformation during
pressurization. Orientation also has a certain impact
on the formation of the new square phase. When
pressure is applied, the free energy of the sample
increases (Fig. 4e). After a period of evolution, the
free energy begins to decrease smoothly and then is
evolved similar to that of the sample without
pressurization.

3.2.2 Pressurized at the medium stage

After the nucleation, the effect of pressurization
on the growth of square phase is studied. The applied
pressure starts at 20000 steps, when a part of the
square phase can be observed. The method for
gradually applying pressure is consistent with the one
used in section 3.2.1, and the results of the
pressurization are shown in Fig. 5 b and d.

From the figure, one finds that the crystal
morphology of the two sets of samples is consistent
with each other before pressing (Fig. 5 a and b). After
applying pressure, it can be seen that the positions of
the grain boundary and the dislocation have changed
significantly, as indicated in Fig. 5 ¢ and d. In
addition, by comparing the two sets of samples, it is
observed that the growth rate of the square phase
increased significantly in the sample under pressure.
Fig. 5e shows the free energy curve of the two sets of
experiments. When pressure is applied, the free
energy of the sample increases significantly, and after
a period of evolution, the free energy curve of the
sample with pressurized is consistent with zero
pressure samples.

3.2.3 Pressurized at the later stage

In order to observe the effect of pressure on the
sample after phase transformation, pressure is applied
to the sample when the structural transformation has
been completed. With reference to the normal growth
of the sample, where it is found that structural
transition has been completed at 42000 time steps,
pressure is applied after 45000 time steps at the later
stage. The method for gradually applying pressure is
consistent with the one used in section 3.2.1.

The samples before the pressurization are shown
in Figs. 6 a and b, where the crystal morphology of the
two sets of samples remained consistent. When the
pressure was applied, the effect of the pressure on the
sample that had completed the structural
transformation was smaller than that in the previous
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simulations. This is because the sample structure
tends to maintain stable. Pressure mainly affects the
action of the grain boundary and dislocation. The
evolution results are shown in Figs. 6 ¢ and d. The
migration of the dislocation core is obvious, together
with the creation of new dislocations, as shown in Fig.
6d. The position of the grain boundary also has some
displacement along the direction of the pressure. The
energy curve of the sample is shown in Fig. 6e, and
the free energy of the sample after pressurization
increases significantly and trends to be stable after a
period of evolution.

3.2.4 The effect of grain orientation on structure
transformation at elevated pressure
The effect of pressure on the sample after
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Figure 5. Dynamic evolution of microstructures of the
pressurized samples and the energy curve. (a)
Control sample at t =20000; (b) Pressurized
sample at =20000; (c) Control sample at
=25000; (d) Pressurized sample at t=25000; (e)
The energy curve of the pressurized sample.

transformation has been studied in previous sections.
However, the grain orientation of the structure after
transformation is not controllable. Therefore, in this
section, different initial grain orientations are set and
then used for applying pressure.

In order to simplify the comparison, only two
initial grains are selected, and the radius are set to be
12. The grain orientations of sample A are 6, =0, 0, =
5¢, respectively, and the initial sample is shown in Fig.
7a. The grain orientations of sample B are 0, =0, 0, =
15°, respectively, and the initial sample is shown in
Fig 7c. After a period of evolution, the two grains
contact each other and form grain boundaries. The
evolutionary results are shown in Figs. 7 b and d,
respectively. The difference in orientation between the
grains is small. So a small angle grain boundary is
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Figure 6. Dynamic evolution of microstructures of the

pressurized samples and the energy curve (a)

Control sample: T=45000; (b) Pressurized

sample: T=45000; (c) Control sample: T=50000;

(d) Pressurized sample: T=50000; (e) The energy

curve of the pressurized sample.
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formed (Fig. 7b). When the difference in orientation
lowers to a certain extent, the grains are merged
without forming a grain boundary. When the angle of
orientation is greater than a certain value, a relatively
stable large angle grain boundary is formed.

Two sets of samples are then subjected to
pressurization simulations (Fig. 8). When the two
grains begin to contact (Figs. 7 b and d), the pressure
is applied to the sample. Changes in the two grain
boundaries can be observed from the comparison

Figure 7. The crystal morphology (a) Sample A: T=0, (b)
Sample A: T=8000; (c) Sample B: T=0; (d)
Sample B: T=8000.

Figure 8. The crystal morphology (a) Sample A: T=15000;
(b) Pressurized sample A: T=15000; (c) Sample

B: T=15000;
T=15000.

(d) Pressurized sample B:

between Fig. 8 b and d with Figs. 7 b and d. After the
application of pressure, small orientation grain
boundary between the two grains easily forms once
the grain boundary rotation occurs, which will result
in further reduction of the orientation difference and
make the grain together, or expand the difference of
orientation and become large angle grain boundaries.
This is also the reason for the large grain boundary
widespread in the sample.

4. Conclusions

In conclusion, the two-mode PFC model is used to
simulate hexagonal lattice transformation to square
lattice structure at elevated pressures. And the
influence of the grain orientation of the square phase
after the structure transformation at elevated pressures
is also discussed. The main conclusions are as
follows:

(1) It is possible to increase the nucleation rate of
the square phase and to influence the orientation of
the generated square phase at elevate pressures.

(2) Pressure will cause the dislocation in grain and
grain boundary migration.

(3) The appearing grain boundaries are related to
the orientation of the initial nuclei and the applied
pressure.
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