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Abstract

The Calphad method is an important tool to assist the development of new alloys. There are several different
thermodynamic software and databases available for such calculations. In some of these alloys there are is an important
order/disorder transition, like in superalloys (Ni-based) or Al-Ti alloys. This paper describes the modeling of such systems
and a new software that has improved the implementation of the modeling of this transition which can extend the
composition range of the application of the model.

Keywords: Calphad method; CEF model; Gibbs energy; Open Calphad software; Long range ordering.

* Corresponding author: bo.sundman@gmail.com

Journal  of  Mining and Metal lurgy,
Section B: Metal lurgy

DOI:10.2298/JMMB170801023S

1. Introduction 

The use of the Calphad method is described
extensivly in many pares and in the book by Saunders
and Miodownik [1]. In the Calphad method each
phase is described with a model for the Gibbs energy
as a function of T, P and the phase constitution. With
appropriate software and assessed databases the user
can calculate phase equilibria, phase diagram and to
simulate phase transformations. 

The Calphad method has been implemented in
several commercial software and databases [2-5].
More recently a free software has been developed
with improved modeling and software techniques.
This will be briefly described in section 3. 

2. The CEF model 

The Compound Energy Formalism (CEF) is used
in the Calphad method as a framework for several
models for different kinds of phases. A phase can have
several crystallographically different sublattices and
as constituents in these one can have atoms, ions or
molecules and also vacancies representing an empty
lattice site. On each sublattice the constituents are
assumed to mix randomly. A substitutional solution
phase a with a single lattice site and without vacancies
has a Gibbs energy,         per mole component described
by: 

(1)

(2) 

where xi is the mole fraction of constituent i,         is
the Gibbs energy for constituent i relative to a defined
reference state. The second term is the configurational
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entropy where R is the gas constant and T the absolute
temperature.             is the excess Gibbs energy including
interactions between the constituents and            can
be used to describe particular physical contributions
for example from magnetic transitions. This and other
kinds of models are described in detail in the book by
Lukas et al [9]. 

2.1 Phases with long range ordering 

When a crystalline phase has several different
kinds of lattice sites, for example an intermetallic like
the , µ or Laves phases this can be described by
specifying several sublattices with different sets of
constituents. Several of these sublattices may have
vacant sites and rather than model the Gibbs energy
per mole components it is convenient to model the
Gibbs energy per mole lattice sites i.e. per mole of
formula units. This is denoted by a subscript M, GM,
rather than m as in Gm in eq. 1. A generalization of eq.
1 using CEF is: 

(3)

(4)

where I represent a “compound” or “endmember”
of the phase specifying one constituent i in each
sublattice s.       is the product of the constituent
fractions,       specified by I, and this can be considered
as the “probability” of having this compound in the
phase.

is the Gibbs energy of formation of endmember
I from the reference states of the components. In the
configurational entropy as is the number of sites on
sublattice s. The mole fraction of a component i can
be calculated from the constituent fractions as:

(5)

where bij is the stoichiometric factor of component
i in constituent j.

This model has been used successfully to describe
many different kinds of phases with long range
ordering (LRO) like interstitial solution [6],
intermetallics [7] and phases with order/disorder
transitions [8]. But frequently the models have
simplified the real crystallography because the
number of endmembers increases rapidly with the
number of constituents on the sublattices. For
example the  phase has 5 crystallographic lattice
sites but it is often described with just 3 to simplify
the calculations and the database development.

Even with few sublattices there are often not
enough data to determine values for all endmembers
as the phases are stable only in a limited composition

and temperature range. The use of DFT calculations to
determine endmember energies can simplify the
modeling as shown by Fries and Sundman [10].

Additionally many endmember energies
calculated by DFT for the given structure have
imaginary phonon frequencies which mean that they
are not mechanically stable. If the unrelaxed value is
taken it will be more positive than could be expected
for the endmember and if the structure is relaxed the
crystallography will change and no longer represent
the correct structure. However, if the endmember is
far fram any stable composition of the phase that may
not be very important but a more a more severe
problems is that the number of endmembers for a
phase with 5 components and where all elements are
considered on all sublattices require 3125 DFT
calculations. This is quite a lot but as will be
explained in the next section there are ways to
simplify this.

2.2 Partitioning of the Gibbs energy of LRO
phases

Many of the complex crystalline lattices can be
considered as a distorted substitutional lattice and this
can be used to simplify the description of phases with
several sublattices.

This fact suggests that one can partition the Gibbs
energy expression in two parts

(6)

(7)
where yis is the sublattice constitution, assuming

that the constituents are same as the components, and     
describes a “baseline” of the Gibbs energy

for the phase using a substitutional model like eq. 1,
but without the configurational entropy. 

describes the configurational entropy and
includes only those endmember energies that has a
lower Gibbs energy than the baseline, i.e. for which
the phase is or could be expected to be stable. All
endmembers that have energies above the baseline, in
particular those representing structures that are
mechanically unstable, can be ignored. This means
there are only a few endmember parameters needed in     

part representing compositions close to where the
phase is stable or where DFT calculations predict the
phase may be stable. This simplification will reduce
the number of endmembers that must be determined
by DFT calculations significantly.

2.3 Phases with order/disorder transitions

A particular case of LRO occur in some phases
with a simple lattice like FCC, BCC and HCP. These
phases are usually modeled with a substitutional
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model like eq. 1 but in some alloys these phases can
have an ordering transition where some constituents
prefer a certain set of sites. An example is the Au-Cu
system where one can, at low temperature, have
several ordered structures based on the FCC lattice
shown in the phase diagram in Fig.2(a) from an
assessment by Sundman et al. [11]. The corresponding
superlattices are shown in Fig. 3.

For physical reasons the ordered forms of FCC
should be modeled with a single Gibbs energy
function which requires at least a 4 sublattice
tetrahedron model in order to have a symmetrical
description. As the transformations from the A1 to the
ordered structures are first order it is in principle
possible to describe each ordered form as a separate
phase but when dealing with ordering of the BCC
phase there are frequently second order transitions
between the different superlattices, as shown in phase
diagram for the Fe-Al system in Fig. 2(b) from an
assessment by Sundman et al [13]. In such cases it is
mandatory to have a single Gibbs energy expression
like eq. 3 for these phases.

The ordered forms of BCC in Al-Fe are shown in
Fig. 4 together with the Heusler structure which can
appear in ternary system. These can be modeled with
a 4 sublattice model according to eq. 3 with a notation
as:
(Al,Fe,Va)0.25(Al,Fe,Va)0.25(Al,Fe,Va)0.25(Al,Fe,Va)0.25
where Al and Fe can enter all sublattices. In order

to be compatible with the modeling of the B2 phase in
the Al-Ni system the vacancy, denoted “Va” is also
included on all sublattices because the B2 phase in the
Al-Ni system is stable at higher concentration that
50% Al due to the replacement of Ni atoms by
vacancies.

There are 81 endmembers in the model for the
ordered BCC in the Al-Fe system but many of them
describe the same state, they are permutations and this
will be further discussed in section 2.5. Written
explicitly for a 4 sublattice model eq. 3 becomes:

(8)

For the expressions for EGM and physGM please refer
to the book by Lukas et al. [9].

Model compatibility is an important feature when
assessing experimental and theoretical data to
describe the Gibbs energy of the phases in binary and
ternary system. The same models must be used for the
same phases in different systems in order to combine
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Figure 2. Calculated phase diagrams for Au-Cu and Fe-Al

Figure 3. The disordered FCC and three ordered superlattices
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them in a thermodynamic database. Another essential
contribution to obtain compatibility is the SGTE
unary database [12] which provides Gibbs energy
functions for the pure elements, oGi in many different
phases, including lattice stabilities for such phases for
which the pure element is never stable.

2.4 Partitioning of the Gibbs energy for
order/disorder

The FCC, BCC and HCP phases are common in
many alloy systems and in order to combine
assessments where the these phases have no ordering
transformation with system where the phases are
described with sublattices for ordering we can make
use of a similar kind of partitioning as described in
section 2.2. But in this case the “baseline” describes a
real phase and the ordering part describe an extra
contribution due to the ordering:

(9)
(10)

where                 describes the disordered Gibbs energy
with a substitutional model like eq. 1 and          
describes the contribution due to LRO using eq. 3. In
this case the configurational entropy is included in all
GM calculations. This should be zero when the phase
is disordered and the simplest way to achieve this is to
calculate the Gibbs energy for the CEF model twice,
once with the original constituent fractions, yis, and
once with these replaced by the mole fractions using

and take the difference.

2.5 Model parameter permutations

A final problem when dealing with ordering in
FCC, BCC and HCP is that many endmember
parameters represent the same state. For example in
Au-Cu system using a 4 sublattice model for the FCC
phase with all superlattices the L12 ordered AuCu3
phase is described by 4 different endmembers that
must be equal:

(11)

An ordered model for the FCC phase with 4
constituents modeled with 4 sublattices has 256
endmembers but only 35 unique values. This is a
complication for the administration of databases as it
is very easy to forget a permutation which will make
the phase always ordered and give wrong
thermodynamic properties even in the disordered
state. But it is possible to implement these
permutations in the software and thus the databases
need only to provide values for the unique
endmembers.

3. The Open Calphad software

Since 2013 there a group of dedicated scientists
has been engaged in the development of a new free
thermodynamic software called Open Calphad [14]
(OC). The OC software use modern techniques to
store model parameters together with the best
algorithms [15] to minimize the Gibbs energy in order
to calculate the equilibrium for a flexible set of
conditions. There is also an application software
interface which makes it possible to integrate OC in
simulation software [16].

The OC software has implemented the partitioning
of the Gibbs energy in a new way which reduces the
calculation times. Recently the OC software has also
implemented the permutation of parameters in
ordered FCC, BCC and HCP phases using a new
technique that reduces the calculation times even
more. It is important for interested scientists to have
access to a free software in order to develop new
models or improved versions of existing models.

The OC software is free with a GNU license and
can be downloaded from the Opencalphad website
[17] or the development version from the github
website [18].

4. Summary

The method to model the Gibbs energy of phases
with LRO is briefly described tigether with some
details of handling this in the software and databases.
In the current databases many simplifications in the
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Figure 4. The disordered BCC and three ordered superlattices
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modeling has been made for the database
management as well as to speed up the calculations.
For example the  phase is often described with just 3
sublattices and in particular the ordering in FCC, BCC
and HCP phases are described with a 2 sublattice
model.

In the case of the L12 phase described with 2
sublattices this leads to a very unsymmetric model
and many ternary and higher order parameters must
be added to compensate for this. With a 4 sublattice
model this is simplified but a 4 sublattice model leads
to a considerable increase the time to calculate an
equilibrium. This is due to the fact that the calculation
time is roughly proportional to the square of the
number of constituents and with 4 sublattices the
number of constituents are doubled. But with new
software it is possible to find ways to speed up the
calculations and make it possible to use models that
are closer to reality also in practical calculations.
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