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Abstract

Systematic first-principles calculations of the single crystal elastic stiffness constants (cij’s) and the polycrystalline
aggregates including bulk modulus (B), shear modulus (G), Young’s modulus (E) have been performed for series binary and
ternary Al compounds at 0 K. In addition, the temperature-dependent elastic properties for some technologically important
phases are calculated. The cij’s are calculated by means of an efficient strain-stress method. Phonon density of states or
Debye model is employed to calculate the linear thermal expansion, which is then used to calculate the temperature
dependence of elastic properties. The calculated temperature-dependent elastic properties are compiled in the format of
CALPHAD (CALculation of PHAse Diagram) type formula. The presently computed elastic properties for Al compounds
are needed for simulation of microstructure evolution of commercial Al alloys during series of processing route.

Keywords: Al alloys; elasticity; first-principles; CALPHAD-type database

Corresponding author: wangjionga@csu.edu.cn* , yong-du@csu.edu.cn#

Journal  of  Mining and Metal lurgy,
Section B: Metal lurgy

DOI:10.2298/JMMB160304031W

1. Introduction

Nowadays, computational simulations offer
powerful tools to provide fundamental understanding
of materials behaviors, and to support materials design
that meet application requirements. The first-
principles calculations are widely used to predict the
thermodynamic, diffusion as well as mechanical
properties of materials of interest [1-4]. Without
adjustable parameters but the input of crystal structure
information, the first-principles computed quantities
can provide reliable “experimental data”. For example,
Wang et al. [2] reported systematic first-principles
computed thermodynamic and elastic properties of
stable Al compounds. However, so far most of the
first-principles calculations are restricted to binary
and/or ternary systems because of the limitation of the
computational capacity. For multi-component systems,
one successful modeling approach is the so-called
CALPHAD (CALculation of PHAse Diagram)
method [5]. The CALPHAD approach was originally
developed for the modeling of thermodynamic
properties by integrating experimental phase equilibria
and thermochemical data via the reasonable
thermodynamic models for phases. The key advantage
for the CALPHAD approach is that the approach
begins with the evaluation of parameters of unary,
binary and ternary systems, from which the description

of higher-order systems can be directly extrapolated.
Recently, the CALPHAD spirit has also been applied
to model other thermophysical (i.e., diffusivity, molar
volume) and mechanical (i.e., elastic coefficient)
properties [6-8].

Aluminum (Al) alloys with alloying elements,
such as Cu, Fe, Mg, Mn, Ni, Si, and Zn, are
technologically important due to their low density and
good mechanical properties [9,10]. It is known that
the elastic moduli of materials can be used to assess
certain mechanical properties such as
ductility/brittleness, hardness, strength and so on [11].
Elastic properties provide information about the
interatomic bounding strength and its anisotropy, the
criterion of structural stability [12,13], the
measurement of lattice vibrations of acoustic modes,
the correlation from an atomistic theory to a
macroscopic material model [11], as well as the
indications of ductility/brittleness [14], hardness [15],
melting points, etc. As a consequence, the theoretical
prediction of the elastic properties can provide
fundamental guidance in identifying materials with
desired mechanical properties. 

To the best of our knowledge, there is no
systematic investigation about the elastic properties of
multi-component Al alloys, and thus no elastic
property database is available in the literature. In view
of the dearth of systematical study, the present work
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aims to predict the elastic properties of single crystal
elastic constants and polycrystalline aggregates, as
well as temperature dependent elastic properties for
binary and ternary compounds in the Al-Cu-Fe-Mg-
Mn-Ni-Si-Zn system. The detail of first-principles
calculations is presented in Section 2 along with brief
introductions of strain-stress method herein, method
to calculate temperature dependent elastic constants,
and way to build mechanical properties for
CALPHAD database. Section 3 shows the computed
single crystal elastic constants (cij’s) together with
polycrystalline aggregates including the bulk (B),
shear (G), Young’s (E) modulus, B/G (bulk/shear)
ratio and anisotropy ratio, and temperature dependent
mechanical properties for representative phases.
Whenever possible, the calculations are compared
with experimental data from the literature. And the
summary of the present work is given in Section 4.

2. Methodology

The present first-principles calculations are
performed using the projected augment wave (PAW)
pseudo-potentials [16,17] as implemented in VASP
(Vienna ab initio simulation package) [18,19], with
the generalized gradient approximation (GGA) as
parameterized by Perdew-Burke-Ernzerhof (PBE)
[20]. All the structures are fully relaxed with respect
to cell shape, volume and atomic coordinates. For
consistency, the 400 eV energy cutoff is used for all
the elements and compounds. The energy
convergence criterion of electronic self-consistency is
chosen as 10-6 eV/atom. The reciprocal space energy
integration is performed by the Methfessel-Paxton
technique [21] for structure relaxations, and for the
final calculations of stresses for determining the cij’s,
the linear tetrahedron method including Blöchl
corrections [22] is used for the Brillouin-zone
integrations. The samplings of k-points are more than
20,000 per reciprocal atom for elastic constants in
terms of the Monkhorst-Pack scheme [23]. As for the
estimation of the vibrational contribution to
Helmholtz free energy, we adopt the phonon
calculations using a supercell method [24] as
implemented in the alloy theoretic automated toolkit
(ATAT) [25].

The energies versus volume data points calculated
from first-principles calculations are fitted by the
four-parameter Birch-Murnaghan equation of state
(EOS) [26]:

(1)

where a, b, c and d are fitting parameters. In the
present work, usually 10 data points in the volume
range of 0.88-1.16V0 are used for the EOS fitting of
each structure. The equilibrium properties estimated

from EOS include the volume (V0), energy (E0), bulk
modulus (B0) and its pressure derivative (B0'). It is
worth mentioning that the fitting parameters are
representable by the equilibrium properties, and vice
versa.

We employ the efficient strain-stress method
[27,28] to calculate the elastic constants at finite
temperatures. The details of the method and the
parameters used in the calculations can be found
elsewhere [2,27,28]. The temperature dependence of
elastic constants can be obtained through first-
principles calculations with the quasi-harmonic
phonon approximation [4]. The Helmholtz energy of a
crystal can be obtained from first-principles
calculations by considering the static energy at 0 K,
the lattice vibrational free energy of the lattice ions,
and the thermal electronic contribution. The
equilibrium volume at a given temperature, V(T), can
be computed through the derivative of Helmholtz
energy to volume, which defines the external pressure
[4]. According to Ledbetter [29], the temperature
dependence of elastic constants is primarily due to the
volume expansion with the increase of temperature.
By calculating the elastic constants at various
volumes, the temperature dependence of elastic
constants can be evaluated via

(2)

It should be noted that the elastic constants
resulting from the above equations are under
isothermal conditions. In the following report, the
mentioned elastic constants only refer to this kind of
isothermal elastic constant. Actually, when the elastic
constants are measured by resonant vibrations, the
system may be viewed as adiabatic because elastic
wave travels faster than heat diffuses, and the
deformation due to the elastic waves is thus a
constant-entropy (isentropic) process. Thus, this
adiabatic or isentropic elastic constant should be
different from the isothermal elastic constant.
According to Liu et al. [8], the isothermal elastic
constant should be smaller than the adiabatic or
isentropic one for a stable phase.

Very recently, Liu et al. [8] has demonstrated one
way to establish the elastic property database for Mg
alloys in the form of CALPHAD formula. Different
models for solution phase, stoichiometric compound
and compound with certain homogeneity range have
been proposed. In the present work, the first-
principles calculations are devoted to the elastic
constants for either stoichiometric compounds or the
compounds with certain homogeneity range but only
at the stoichiometric composition. And we would
rather employ the following polynomial in
temperature [30,31] to describe temperature-
dependent elastic constant for the target phase,
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where a, b and c are the coefficients to be evaluated
based on the elastic constants from the first-principles
calculations.

Based on the single-crystal elastic constants from
the first-principles calculations shown in Eq. (9), the
polycrystalline aggregate properties, such as the bulk
modulus (B), shear modulus (G), and Young’s
modulus (E), can be evaluated by the Voigt’s
approach, which is for the upper bound based on the
uniform strain and reads

(4)

(5)

(6)

(7)

(8)

(9)

3. Results and discussion

Based on the method described above, we have
established the CALPHAD-type elastic property

database for the stable and metastable phases in the
multi-component Al-Cu-Fe-Mg-Mn-Ni-Si-Zn alloys.
The targeted elastic properties include the elastic
constants, bulk modulus, shear modulus and Young's
modulus. The presently obtained mechanical property
database has been compiled into one commercial
database for multi-component Al alloys
(http://www.thermocalc.com). The following phases,
Al2Cu, AlCu, Al4Cu9, AlCu3, Al2Cu(θ’), Al3Cu2,
Al13Fe4, AlFe, AlFe3, Al6Fe, AlFe2, Al2Fe, Al12Mg17,
Al30Mg23, Al3Mg, Al2Mg, Al12Mn, Al6Mn, Al11Mn4,
Al10Mn3, Al3Ni, Al3Ni2, AlNi, AlNi3, AlNi3, Al9Ni2,
Al4Ni3, AlNi2, Al2CuMg, Al5Cu6Mg2, AlCu2Mn,
Al9FeNi, Al10Fe3Ni, Al3FeSi2, AlFeSi, Al3Fe2Si3,
Al18Mg3Mn2, Al2Mn2Si3, Al9Mn3Si, et al. are included
in the database. In the following, the computed elastic
properties for the representative phases in the Al-Ni
system and two ternary compounds Al9FeNi and
Al10Fe3Ni are presented.

Table 1 compares the presently calculated elastic
stiffness constants (cij's), elastic moduli (in GPa), and
the anisotropy ratio at 0 K in the Al-Ni system with
the experimental data and first-principles calculations
available in the literature. The presently calculated
elastic properties of Al3Ni, Al3Ni2, AlNi, Al3Ni5, and
AlNi3 et al., are in good agreement with the literature
data [32-37]. It was found that the Born stability
criteria [12] of mechanical stability holds for all the
phases studied herein:        ,                and 
the bulk modulus also satisfies                ,implying that
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System Phase c11 c12 c13 c15 c22 c23 c25 c33 c35 c44 c46 c55 c66 B* G* E* B/G A

Al-Ni

Al3Ni 188.1 80.6 75.3 195.3 69.0 186.2 84.7 64.9 67.8 113.2 65.7 165.2 1.72 0.113
Al3Ni [40] 169 87 94 167 81 164 89 74 51 113

Al3Ni2 239.8 82.2 64.7 285.0 86.9 78.5 131.8 86.8 213.6 1.52 0.063
Al3Ni2 [40] 226 57 33 317 93 85 119

AlNi 208.7 135.5 118.0 159.9 73.9 192.2 2.16 1.841
AlNi [41] 199 137 116 158
AlNi [40] 170 158 101 162
AlNi [42] 200 140 120
Al3Ni5 [2] 248 151.4 102.9 205.6 143.9 257.7 103.5 80.5 125.7 167.5 73.6 192.6 2.28 1.433

Al3Ni5 [40] 234 147 93 210 144 253 109 89 126 162
AlNi3 241.4 149.8 128.3 180.4 84.9 220.2 2.12 1.390

AlNi3 [35] 223 148 125 173 77 202 2.25
AlNi3 [36] 224.5 148.6 124.4 174 77 202 2.26
AlNi3 [37] 242.2 151.8 125.4 182 83 217 2.19
AlNi3 [40] 229 161 125 183

Al9Ni2 173 72 43 16 177 63 -7.5 200 -9.9 59 26 59 100.5 48.5 125.3 207
Al4Ni3 246 86 93 139.4 87.6 217.3 1.59
AlNi2 240 116 95 -38 63 63 158.2 58.4 156.0 271

Al-Fe-Ni
t1-Al9FeNi 200 57 41` 80 56 68 100 69 168 1.45

t3-Al10Fe3Ni 225 93 64 92 126 78 195 1.61

Table 1. Calculated elastic stiffness constants (cij's), elastic moduli in GPa, and Anisotropy ratio at 0 K along with the
experimental and calculated data available in the literature

B* = Bulk modulus, G* = Shear modulus, E* = Young’s modulus



that these compounds are stable against elastic
conformation.

Starting from cij's, the polycrystalline aggregate
properties, such as the bulk modulus (B), and shear
modulus (G), can be calculated in terms of Voigt-
Reuss-Hill approach and Hill approach, which gives
the mean value of Voigt and Reuss. And the computed
ratios of B/G indicate that AlNi, Al3Ni5, and AlNi3 are
ductile materials. The other phases show brittle
behavior.

Elastic anisotropy ratio of a cubic crystal can be
characterized by the Zener’s anisotropy ratio, A,
which represents the ratio of two shear moduli. The
degree of deviation of A from unity 1 defines the
extent of elastic anisotropy. The predicted elastic

anisotropy ratios, as shown in Table 1, are in good
agreement with other theoretical calculations. It is
reported that the elastic anisotropy is related to the
materials’ resistance to microcrack [38]. The large
value of A promotes the cross-slip pinning process
due to the yielded driving force acting on screw
dislocations [39]. We therefore conclude that the
cubic AlNi enhances more easily and is less resistant
to microcracks compared to other stable and
metastable compounds.

Following the method described in Section 2, the
temperature-dependent elastic constants in stable
Al3Ni, Al3Ni2, AlNi, Al3Ni5, AlNi3 phases and
metastable Al4Ni3, Al9Ni2, and AlNi2 are calculated in
the present work. According to the Al-Ni phase
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Table 2. Assessed parameters (a+b×T+c×T2) of independent elastic constants of stable and metastable compounds in the
Al alloys

System Phase Crystal system Independent elastic
constant

Assessed parameters
(a+b×T+c×T2, 0≤T≤1800)

Al-Ni

Al3Ni Orthorhombic

C11 +184.197-0.0248×T-3.854E-6×T2

C12 +78.339-0.0165×T-1.964E-6×T2

C13 +73.138-0.0181×T-3.811E-7×T2

C22 +190.405-0.0306×T-4.029E-6×T2

C23 +67.437-0.0125×T-1.791E-7×T2

C33 +182.068-0.0285×T-5.114E-6××T2

C44 +83.261-0.00782×T-1.901E-6×T2

C55 +64.121-0.00551×T-8.676E-7×T2

C66 +66.857-0.00759×T-8.572E-7×T2

Al3Ni2 Hexagonal

C11 +235.466-0.0293×T-2.462E-6×T2

C12 +79.850-0.0177×T-3.037E-7×T2

C13 +62.900-0.0143×T-2.461E-7×T2

C33 +279.897-0.0343×T-3.079E-6×T2

C44 +85.828-0.00754×T-8.038E-7×T2

AlNi Cubic
C11 +203.473-0.03594×T-3.172E-6×T2

C12 +131.783-0.0260×T-2.0112E-6×T2

C44 +115.437-0.0156×T-2.393E-6×T2

Al3Ni5 Orthorhombic

C11 +241.6638-0.03835×T-2.5705E-6×T2

C12 +148.8165-0.02954×T-1.0922E-6×T2

C13 +101.0051-0.02247×T-4.9369E-7×T2

C22 +199.9301-0.03312×T-1.5547E-6×T2

C23 +140.3491-0.02817×T-6.5112E-7×T2

C33 +252.6910-0.04009×T-1.7629E-6×T2

C44 +101.4822-0.01571×T-8.6035E-7×T2

C55 +79.2779-0.01222×T-5.6937E-7×T2

C66 +123.5118-0.01710×T-1.51376E-6×T2

AlNi3 Cubic
C11 +237.0176-0.0347×T-4.680E-6×T2

C12 +146.1824-0.02825×T-2.884E-6×T2

C44 +126.1870-0.01553×T-2.614E-6×T2

Al4Ni3 Cubic
C11 +241.3104-0.03957×T-2.874E-7×T2

C12 +83.8212-0.01954×T-5.1731E-8×T2

C44 +92.1356-0.01195×T-1.308E-7×T2

AlNi2 Trigonal

C11 +229.6382-0.05236×T+5.2377E-7×T2

C12 +110.4761-0.02775×T+2.6659E-7×T2

C13 +90.7486-0.02404×T+3.6036E-7×T2

C14 -36.3430+0.007685×T+1.4086E-7×T2

C33 +328.0426-0.05992×T-1.4733E-6×T2

C44 +61.4475-0.009023×T-9.5648E-7×T2

Table 2. continued on next page



diagram, the Al3Ni, Al3Ni5 and Al4Ni3 are the
stoichiometric compounds, while Al3Ni2, AlNi and
AlNi3 are compounds with certain homogeneity
range. Here, only the elastic constants for the
stoichiometric compositions of Al3Ni2, AlNi and
AlNi3 phases are calculated. And Table 2 shows the
assessed parameters (a+b×T+c×T2) for the elastic
properties of the phases in the Al-Ni system and Al-

FeNi. In order to conserve space, only a stable binary
phase Al3Ni, and a metastable phase Al4Ni3 were
taken as examples to demonstrate the accuracy of the
present work in the following. More details can be
found in the database for multi-component Al alloys
(http://www.thermocalc.com).

Fig. 1 shows the calculated isentropic elastic
constants of AlNi3 phase as a function of temperature,
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Table 2. continued from previous page

Al-Ni Al9Ni2 Monoclinic

C11 +169.8994-0.03494×T-3.3562E-7×T2

C12 +70.1426-0.01775×T+4.9721E-7×T2

C13 +42.0812-0.01998×T+1.2876E-6×T2

C15 +42.0812-0.01998×T+1.2876E-6×T2

C22 +173.0832-0.03519×T-7.6157E-7×T2

C23 +61.0805-0.02311×T+2.0669E-7×T2

C25 -7.099+0.0009627×T+5.9999E-7×T2

C33 +196.8543-0.03369×T-2.3755E-6×T2

C35 -9.5112+0.001286×T-1.9112E-8×T2

C44 +57.4953-0.009376×T+1.0318E-7×T2

C46 +2.3914-0.0007643×T+2.9752E-7×T2

C55 +25.6002-0.008706×T+1.9078E-6×T2

C66 +58.3008-0.008429×T-6.5622E-7×T2

Al-Fe-Ni

Al9FeNi Monoclinic

C11 +196.9423-0.04011×T-2.0010E-6×T2

C12 +56.4427-0.02321×T+2.7723E-7×T2

C13 +40.4711-0.02218×T+1.1425E-6×T2

C15 -18.7033-0.002612×T+1.0235E-6×T2

C22 +196.8179-0.04388×T-2.1741E-6×T2

C23 +57.4576-0.01804×T+1.7021E-6×T2

C25 +4.4332-0.0002332×T-1.8654E-6×T2

C33 +196.6731-0.03762×T-1.9852E-6×T2

C35 -11.3187+0.0007779×T-1.0379E-6×T2

C44 +79.3927-0.01256×T-2.1218E-7×T2

C46 -0.1943-0.0006680×T+2.7892E-10×T2

C55 +55.2823-0.01346×T+1.1476E-6×T2

C66 +67.9200-0.01124×T-8.3694E-7×T2

Al10Fe3Ni Orthorhombic

C11 +213.6117-0.03365×T-2.4950E-6×T2

C12 +90.7193-0.02012×T+1.7107E-6×T2

C13 +62.7476-0.01975×T+7.8290E-7×T2

C22 +214.2114-0.03344×T-2.7153E-6×T2

C23 +62.9301-0.01969×T+7.0969E-7×T2

C33 +246.9767-0.0381×T-2.7226E-6×T2

C44 +91.0161-0.01222×T-1.3224E-6×T2

C55 +90.9973-0.01221×T-1.3083E-6×T2

C66 +61.5508-0.006705×T-2.1403E-6×T2



compared with the experimental data of Tanaka and
Koiwa [43] and Prikhodko et al [44]. AlNi3 phase is of
cubic crystal structure, and thus there are 3
independent elastic constants, i.e., c11, c12, and c44. As
can be seen in the figure, the calculated elastic
constants of AlNi3 phase based on the presently
established mechanical property database are in good
agreement with the experimental results. This figure
shows the accuracy of the present work. Calculated
elastic constants cij decrease with increasing
temperature. In addition, the model-predicted
temperature dependence of bulk modulus, shear
modulus and Young's modulus of AlNi3 phase can be
predicted based on cij according to equations 3-9.
From the equations, we know that bulk modulus
decreases with increasing temperature, indicating that
the hardness decreases with respect to temperature.
Al4Ni3 is a metastable cubic phase, and the calculated
temperature dependent elastic constants c11, c12 and c44
are shown in Fig. 2. There are no experimental data
available for this phase.

Elastic strain energy is one of a few terms for the
total energy. In almost all of the previous phase field
simulation for microstructure evolution, the
temperature dependence of the elastic properties is not
taken into account [11,45]. Such a treatment will lead
to a large uncertainty for phase field simulation. This
is also the case for the estimation of creep resistance.
Currently, the temperature dependence of the elastic
properties in the equation for the creep resistance is
not considered. The presently computed elastic
properties for Al compounds are needed for
simulation of microstructure evolution of commercial
Al alloys during series of processing route.

4. Summary

Using systematic first-principles calculations and
the stress–strain method, the single-crystal elastic
stiffness constants (cij’s) and polycrystalline
aggregates elastic properties at 0 K for binary and
ternary compounds in Al-rich corner, as well as the
temperature-dependent elastic properties for some
technological important phases are predicted. The
predicted elastic properties are in good agreement
with experimental results and theoretical data
available in the literature. Elastic stiffness constants of
phases are fitted by temperature related quadratic
polynomial, focusing on the establishment of
CALPHAD-type mechanical property database. The
presently generated elastic property database for Al
alloys is of interest for phase field simulation of
microstructure evolution of Al alloys during series of
processing route.
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