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Abstract 

The temperature and silicon content of blast furnace molten iron are directly related to 

its quality. Therefore, establishing an effective prediction model for these parameters is 

crucial. To address these issues, an Improved Arithmetic Optimization Twin Support 

Vector Machine for Regression (LAOA-TSVR) model was developed to predict the 

temperature and silicon content of blast furnace molten iron. Initially, SPSS was used 

to perform a correlation analysis and identify the main influencing factors. Secondly, 

to verify the model's predictive performance, it was compared with three commonly 

used prediction models: Back Propagation Neural Network (BP), Support Vector Re-

gression (SVR), and Twin Support Vector Machine for Regression (TSVR). Preliminary 

results indicate that the prediction accuracy of the LAOA-TSVR model is significantly 

higher than that of the other models. Finally, the model was applied to the actual pro-

duction process of an iron mill for a total of 200 furnaces. The results show that the hit 

rates of molten iron temperature and silicon content within the error ranges of ±5% and 

±0.5%, respectively, are 92.12% and 92.53%, with a corresponding double-hit rate of 

85.32%. The model effectively meets the production requirements of an iron mill and 

provides valuable guidance for the blast furnace production process. 

Keywords: blast furnace molten iron temperature, molten iron silicon content, molten 

iron quality, arithmetic optimization algorithm, twinned support vector regression 

 

1. Introduction  

Blast furnace ironmaking is a crucial aspect of iron production. The process in-

volves a series of complex high-temperature, high-pressure physical and chemical re-

actions to reduce iron from iron ore and other solid iron-containing compounds. This 

process exhibits strong nonlinearity, multivariable dependencies, strong coupling, time 

variance, large time lags, and various other complex dynamic features.0 Therefore, gen-

eral traditional prediction models are difficult to further improve. Establishing an effi-

cient and high-precision prediction model is crucial for controlling the accuracy of blast 
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furnace production, improving ironmaking efficiency, and increasing raw material uti-

lization. 

Accurate prediction of blast furnace molten iron temperature and silicon content 

is critical for the steel industry's production and operation.[2] In the early stages of 

research, many scholars conducted extensive studies to model blast furnace molten iron 

quality parameters. In the late 1960s, a Japanese scholar proposed a one-dimensional 

mechanistic model for molten iron temperature. However, the blast furnace is a com-

plex multi-dimensional system where the temperature and material distribution of mol-

ten iron exist not only along the vertical axis but also radially. Subsequently, other 

scholars have extended the one-dimensional model to address its limitations by propos-

ing the use of multiphase flow and two-way interphase interaction, known as the "multi-

fluid theory," to describe the phenomena in the lower part of the furnace, making sig-

nificant progress. However, the model can only be applied under more stable furnace 

conditions, which presents certain limitations. In the 1980s, with the advancement of 

artificial intelligence technology, researchers began using related methods to study the 

problem. However, solving the complex blast furnace problem remained challenging. 

After extensive research, several models have been proposed to predict silicon content, 

including a linear prediction model based on mathematical and statistical methods com-

bined with Auto-Regressive Vector (ARX), the Vector Auto-Regressive Moving Aver-

age (VARMAX),[3,4] and an improved model combining genetic algorithm and BP 

neural network.[5,6] Subsequently, researchers began using the SVR algorithm to ad-

dress these problems. While SVR excels in handling small samples, nonlinear regres-

sion, and high-dimensional data, its training process is slow when dealing with large-

scale data.[7,8] Currently, deep learning methods are used to predict molten iron tem-

perature and silicon content. However, deep learning models typically require a large 

amount of labeled data for effective training, which is expensive and inadequate for 

solving problems involving complex reasoning or dynamic decision-making. Further-

more, the deep learning approach requires significant computational resources, making 

model training and inference costly, with high hardware requirements. These factors 

raise the cost of applying the model. This may increase the cost of replicating the model 

across additional steel groups.[9] Compared to the above methods, the TSVR algorithm 

effectively addresses these drawbacks. It overcomes the neural networks' tendency to 

fall into local minima and has significant advantages in dealing with nonlinear problems, 

small samples, and high-dimensional data. Consequently, it has been widely researched 

and applied in various fields in recent years.[10] 

To address these issues, the research group proposes a prediction model for blast 

furnace molten iron end temperature and silicon content based on LAOA-TSVR, ena-

bling efficient processing of multi-dimensional complex data.[11,12] The algorithm 

also solves the optimization problem under multiple constraints, ensuring a unique op-

timal solution, and greatly improves the model's prediction accuracy. 

In the research process, the group first normalized the industrial trial data of an 

iron mill to determine the model inputs. Despite its benefits, the TSVR still cannot fully 

address the issue of potential numerical overflow in multidimensional data. To solve 

this problem, the group used AOA to optimize the kernel function, tuning parameters, 
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and penalty factors.[13] Additionally, AOA is prone to issues such as poor exploration 

capabilities and early convergence to non-optimal solutions.[14] Therefore, the re-

search group introduced the Lévy algorithm to improve AOA(LAOA). The LAOA al-

gorithm compares favorably with other well-known algorithms, such as the improved 

particle swarm optimization algorithm and the improved sparrow search algorithm, 

both based on Lévy flight algorithm, offering simpler computation and strong global 

optimization capabilities.[15,16] The LAOA-TSVR not only escapes local optima and 

better solves multidimensional optimization problems but also expands the parameter 

search range and accelerates convergence speed. To verify the predictive performance 

of the LAOA-TSVR model, its prediction indexes (SSR (Sum of squares of the regres-

sion)/SST(Total sum of squares), SSE(The sum of squares due to error)/SST(Total sum 

of squares), RMSE (Root mean squared error), MAE (Mean absolute error), and HR 

(Hit Rate)) were compared and analyzed against those of BP, SVR, and TSVR models. 

The LAOA-TSVR model was determined to have the best prediction results. Finally, 

the model was applied to industrial trials to assess its practical application. Given the 

slight variations in production processes among ironworks, the model can be tailored 

to accommodate these differences, ensuring high prediction accuracy. This adaptability 

highlights the model’s robust generalizability. 

2. Industrial Trials 

During industrial trials, the research group used the blast furnace of an iron mill 

as the research object. The blast furnace production-related testing equipment and pa-

rameters of the production process were utilized to collect the required blast furnace 

ironmaking data for the model. These parameters mainly included: Coke ratio, Coal 

ratio, Wind speed, Coke load, Air permeability index, Blast furnace air volume, Blast 

furnace bosh gas volume, Comprehensive smelting intensity, Oxygen enrichment rate, 

Coke smelting intensity, Hot-air blast temperature, Comprehensive coke ratio, Furnace 

top pressure, Hot blast air pressure, Comprehensive load, Slag-iron ratio. The temper-

ature of the molten iron was measured at the outlet using a temperature measuring gun 

(model: Heraeus LCTC4.5/12) four times (averaged over multiple points). Simultane-

ously, samples were taken to measure the silicon content in molten iron using a spec-

trum analyzer (model: Thermo Scientific ARL4460). These two parameters were used 

as the model's output. The schematic diagram of the industrial trials is shown in Figure 

1.
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Figure 1. Schematic diagram of industrial trials 

3. Data processing 

3.1 Correlation analysis of influencing factors 

Since there are numerous parameters affecting blast furnace production, the input 

parameters will directly impact the prediction accuracy for molten iron temperature and 

silicon content. To identify the input variables for the model, 2000 sets of collected 

production data were utilized. Correlation analysis of the influencing factors was con-

ducted using SPSS, and the results are presented in Table Ⅰ. The correlation coefficient 

measures the strength of the relationship between two variables. A value of 1 indicates 

a perfect positive correlation, -1 indicates a perfect negative correlation, and 0 indicates 

no correlation. The closer the coefficient is to 0, the weaker the correlation. Therefore, 

parameters with low correlation were excluded from the analysis. The data comparison 

leads to an ordering of the correlations regarding the temperature of molten iron as 

follows: Hot-air blast temperature, Blast furnace bosh gas volume, Hot blast air pres-

sure, Oxygen enrichment rate, Coal ratio, Coke load, Coke ratio, Comprehensive smelt-

ing intensity, Blast furnace air volume, Blast furnace top pressure, Comprehensive load, 

Coke smelting intensity, Comprehensive coke ratio, Air permeability index, Wind speed, 

Slag-iron ratio; Provides a basis for studying the factors affecting iron temperature. The 

correlation regarding iron silicon content is ranked as follows: Hot blast air pressure, 

Coke load, Hot-air blast temperature, Oxygen enrichment rate, Coal ratio, Blast furnace 

bosh gas volume, Comprehensive smelting intensity, Blast furnace air volume, Wind 

speed, Air permeability index, Coke ratio, Coke smelting intensity, Blast furnace top 

pressure, Comprehensive coke ratio, Comprehensive load, Slag-iron ratio. Provides a 

basis for the study of the factors affecting the silicon content of molten iron. The corre-

lation heat map between the factors is shown in Figure 2. The scale on the right side of 

the heat map indicates the color shades corresponding to different correlation coeffi-

cients. When the correlation between multiple attributes is very high (correlation coef-

ficient > 0.7), known as multicollinearity, it tends to result in unstable predictions. Var-

iables with high correlation coefficients with multiple parameters are excluded, as cor-

relation exists between most parameters. The correlation coefficients between the 16 
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influencing factors and molten iron temperature and silicon content are shown in Figure 

3. In the Figure, closer proximity to the outer circle indicates a stronger positive corre-

lation, while closer proximity to the inner circle indicates a stronger negative correla-

tion. The axes in the radial direction correspond to specific variables as shown in Table 

1. 

 

Table 1. Table of correlation coefficients between influencing factors 

Variable Variable name 

Molten iron temperature 

correlation coefficient 

Molten iron silicon con-

tent  

correlation coefficient 

𝑋1 Oxygen enrichment rate (%) 0.586 0.596 

𝑋2 Comprehensive coke ratio 0.294 0.221 

𝑋3 Wind speed (m∙s−1) -0.239 -0.448 

𝑋4 Blast furnace bosh gas volume (m3) -0.614 -0.560 

𝑋5 Coal ratio (kg∙t−1) 0.519 0.503 

𝑋6 Hot-air blast temperature (℃) 0.616 -0.637 

𝑋7 Slag-iron ratio (k∙gt−1) -0.150 -0.124 

𝑋8 Air permeability index -0.261 -0.409 

𝑋9 Blast furnace top pressure (MPa) -0.358 -0.322 

𝑋10 Blast furnace air volume (m3 ∙min−1) -0.427 -0.471 

𝑋11 Coke ratio (k∙gt−1) 0.508 0.403 

𝑋12 Hot blast air pressure (MPa) -0.606 0.665 

𝑋13 Comprehensive load 0.346 0.139 

𝑋14 Coke load -0.513 -0.647 

𝑋15 Coke smelting intensity 0.302 0.375 

𝑋16 Comprehensive smelting intensity -0.484 -0.477 
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Figure 2. The correlation coefficient between the features. 

 

 

Figure 3. Radar chart for correlation analysis. 
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3.2 Data normalization 

Due to the wide range of factors influencing blast furnace molten iron quality char-

acteristics, the numerical variances are excessive. To increase the accuracy of the blast 

furnace molten iron quality parameter prediction model, facilitate rapid convergence, 

and enhance the model's generalization capacity, the input and output data are normal-

ized using the following equations: 

Step1：Calculation of quartiles: Sort the dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} to obtain 𝑋𝑠𝑜𝑟𝑡

,where 𝑋𝑠𝑜𝑟𝑡 = {𝑥(1), 𝑥(2), … , 𝑥(𝑛)},and satisfies 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛)。 

The quantile 𝑞𝑖 of each data point 𝑥𝑖 can be calculated from its sort position𝑟𝑖: 

𝑞𝑖 =
𝑟𝑖

𝑛 + 1
(1) 

Where, 𝑟𝑖 is the position index of data point 𝑥𝑖 after sorting and n is the total number 

of data points. 

Step2：Map the computed quantile 𝑞𝑖 to the target distribution [0,1]. 

𝑥𝑖
′ = 𝑞𝑖 (2) 

4. Establishment of predictive model 

4.1 Establishment of LAOA model 

The AOA has the advantages of fast convergence speed and strong global search 

ability, but it has poor exploratory ability and tends to converge to non-optimal solu-

tions prematurely. To solve this problem, the research group introduces random pertur-

bation to the optimal position in AOA using Lévy flight, expanding the search range 

and accelerating convergence speed. The steps are as follows: 

Step1: With the introduction of the Lévy flight perturbation, the new optimal posi-

tion is calculated as follows: 

 

X*(t)=X(t)+a*Lévy(λ) (3) 

Where: 

X*(t): Optimal individual generated by previous t iterations; 

X(t): Current position vector; 

a: Random number of optimal individual locations. 

 

Lévy(λ):|λ|
-1-δ

,0<δ<2 (4) 

Where: 

λ: Random Lévy step. 

Since the Lévy flight is complex, it is simulated using the Mantegna algorithm, 

which is mathematically formulated as follows: 

 

λ=
μ

|κ|
1
δ

(5) 
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Where: 

μ: N(0,σ
μ

2
) and κ:N(0,1) obey uniform distribution. 

σμ=
Γ(1+β)sin (

πβ
2

)

Γ (
1+β

2
) β2

(
β-1
2

)
(6) 

To reduce the calculation amount, β =1.5 is taken in the calculation process, then 

σμ=0.6966. 

Step2: After defining the optimal search agent, other search agents will try to up-

date the location to the best search agent, which is represented by the mathematical 

model: 

𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶𝐼𝑡𝑒𝑟 × (
𝑀𝑎𝑥 − 𝑀𝑖𝑛

𝑀𝐼𝑡𝑒𝑟
) (7) 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
best(𝑥𝑗) ÷ (𝑀𝑂𝑃+∈) × ((𝑈𝐵𝐽 − 𝐿𝐵𝐽) × 𝜇 + 𝐿𝐵𝐽) , 𝑟2 < 0.5

best(𝑥𝑗) × 𝑀𝑂𝑃 × (𝑈𝐵𝐽 − 𝐿𝐵𝐽) × 𝜇 + 𝐿𝐵𝐽), otherwise           
(8) 

   

Where: 

𝑀𝑂𝐴(𝐶𝐼𝑡𝑒𝑟): Value of the function at the t-th iteration. Function is a coefficient 

calculated by Eq. (6) used in the following search phases； 

𝐶𝐼𝑡𝑒𝑟: Current iteration, which is between 1 and the maximum number of iterations; 

Min, Max: Minimum and maximum values of the acceleration function, respec-

tively; 

𝑥𝑖(𝐶𝐼𝑡𝑒𝑟 + 1): The i-th solution in the next iteration; 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟 + 1): The j-th position of the i-th solution in the current iteration; 

best(𝑥𝑗): The j-th position in the best solution obtained so far;  

∈ is a small integer; 

𝑈𝐵𝐽, 𝐿𝐵𝐽: Upper and lower bound values for the j-th position, respectively. 

𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟) = 1 −
𝐶_𝐼𝑡𝑒𝑟1 𝛼⁄

𝑀𝐼𝑡𝑒𝑟
1 𝛼⁄

(9) 

  

Where: 

𝑀𝑂𝑃(𝐶𝐼𝑡𝑒𝑟): Value of the coefficient MOP at the current number of iterations; 

𝛼: A sensitive parameter reflecting the accuracy of mining for the number of iter-

ations and is fixed to 5. 

In the AOA, the exploration phase is limited by the boundaries of the design vari-

ables, which may lead to problems of poor exploration capability and premature con-

vergence to non-optimal solutions. The use of Lévy to improve the AOA can be a good 

way to avoid this kind of problem, expand the exploration capability, and make the 

parameter converge to the optimal solution. The coefficients μ can be calculated by 

the following equation: 
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𝜇 = 2𝑎𝐿é𝑣𝑦(λ)-ae (10) 

Step3: In the exploitation phase, the operator can easily enhance the search process 

in the promising regions of the search space detected in the exploration phase, and the 

mathematical model of its position update can be expressed as follows: 

𝑥𝑖,𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝐽 − 𝐿𝐵𝐽) × 𝜇 + 𝐿𝐵𝐽) , 𝑟3 < 0.5

𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × (𝑈𝐵𝐽 − 𝐿𝐵𝐽) × 𝜇 + 𝐿𝐵𝐽), otherwise
(11) 

 Where: 

r3: A uniformly distributed pseudo-random number with values ranging from 0 to 

1. 

4.2 Establishment of TSVR model 

TSVR obtains the objective function by solving two quadratic programming prob-

lems to obtain two regression functions. Assuming that the training sample is an n-

dimensional vector, it can be denoted as (x1, y1), ...,(xp, yp) , the number of training 

samples is p  . Let the input training samples 𝐴 = [x1, … , xp]T ∈ Rp∗n  , the output 

training sample 𝑌 = [y1, … , yp]T ∈ Rp∗n  , a unit vector of appropriate dimension 

e=[1,…,1]
T
.[17] Introduce the kernel function as well as the regression function with 

the expression: 

𝐾(𝑥T, 𝐴T) = exp (−
||𝑥𝑇－𝑥𝑖

𝑇||
2

2𝜎2
) , σ＞０ (12) 

 

𝐻 = [𝐾(𝐴, 𝐴T), 𝑒] (13) 

𝑓𝑤1(x) = 𝐾(𝑥T, 𝐴T)𝜔1 + 𝑏1 (14) 

𝑓𝑤2(x) = 𝐾(𝑥T, 𝐴T)𝜔2 + 𝑏2 (15) 

 

Where: 

σ: Width of the Gaussian kernel function; 

𝜔1,𝜔2: Weight vectors; 

𝑏1,𝑏2: Bias terms. 

By introducing the Lagrange multiplier α , the β , combined with the KKT con-

dition, the dyadic problem of the objective function can be obtained and solved to ob-

tain the optimization problem of Eqs. (13) and (14). 

 

max （
1

2
𝛼T𝐻(𝐻T𝐻)−1𝐻T𝛼 + f T𝐻(𝐻T𝐻)−1𝐻T𝛼 − 𝑓T𝛼） (16) 

    

𝑓 = 𝑌 − 𝑒𝜀1, 0 ≤ 𝛼 ≤ 𝐶1𝑒 (17) 

    



 

 

10 

 

max （
1

2
𝛽T𝐻(𝐻T𝐻)−1𝐻T𝛽 + ℎT𝐻(𝐻T𝐻)−1𝐻T𝛽 − ℎT𝛽） (18) 

  

ℎ = 𝑌 − 𝑒𝜀2, 0 ≤ 𝛽 ≤ 𝐶2𝑒 (19) 

     

Where: 

𝐶1、𝐶2、𝜀1、𝜀2、𝑓、ℎ: Adjustment parameter; 

𝛼: A vector of Lagrange multipliers; 

𝛽: Lagrange multiplier vector. 

Using the optimal solution obtained from the above equation, the first term in the 

objective function of the optimization problem is the sum of the squares of the distances 

from the training sample points to the function where the upper and lower bounds are 

located, so the optimal solution can be obtained by minimizing the first term such that 

the function 𝑓𝑤1(x) or 𝑓𝑤2(x) can be adapted to 𝜀1 or 𝜀2 where the training sam-

ples have to be larger than the function 𝑓𝑤1(x) with a distance at least greater than 

ε1 , and the objective function 𝑓𝑤2(x) has a distance at least less than ε2 , when there 

is a distance greater than ε1 or ε2 of error samples exists, they are penalized by the 

slack variables, and the weight vector and bias vector can be obtained as: 

[𝜔1, 𝑏1]T = (𝐻T𝐻 + 𝛾𝐼)−1𝐻T(𝑓 − 𝛼) (20) 

   

[𝜔2, 𝑏2]T = (𝐻T𝐻 + 𝛾𝐼)−1𝐻T(ℎ + 𝛽) (21) 

   

Where: 

𝛾: Normal number; 

𝐼: A unit matrix of appropriate dimensions. 

Then the values of the weight vector and bias are brought into the regression func-

tion 𝑓1(𝑥) and 𝑓2(𝑥) in which, using these two objective regression prediction func-

tions, the prediction model can be determined according to the principle of the TSVR, 

which ultimately results in the objective function of the model : 

𝑓𝑤(𝑥) = 𝐾(𝑥T, 𝐴T)
(𝜔1 + 𝜔2)

2
+

(𝑏1 + 𝑏2)

2
(22) 

4.3 Establishment of LAOA-TSVR model 

2000 sets of data are randomly picked from the trials database, 1500 for training 

and 500 for testing. The LAOA-TSVR is used to establish the prediction models of iron 

temperature and molten iron silicon content, respectively, and its detailed optimization 

process is shown in Figure. 4. Where the settings lambda: 1.5, search solutions: 10, max 

iterations: 1000.
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Figure 4. Flow chart of the LAOA-TSVR model 

 

To produce the best prediction results, the LAOA is utilized to improve the kernel 

function, tuning parameters, and penalty factors of the TSVR model, resulting in the 

LAOA-TSVR model. The process of the LAOA-TSVR is illustrated in Figure. 4 with 

the following steps: 

Table 2. Algorithm steps 

Steps Element 

Step 1 The database is utilized to obtain the training set and test set samples and the data is preprocessed 

Step 2 The model is initialized to randomly determine the location of a solution 

Step 3 Using the Lévy flight update arithmetic optimization algorithm, calculate the fitness value to update 

the best solution and obtain the optimal solution vector 

Step 4 Calculate whether the end condition is met to reach the maximum number of itera-tions 1000 times, 

if so, output the best parameters. Otherwise, continue to iterate and update according to the arithmetic 

optimization algorithm until the end condition is met 

Step 5 Substitute the optimal vectors into the weight vectors and deviation vectors to obtain the kernel func-

tion, tuning parameters and penalty factors 

Step 6 The LAOA-TSVR prediction model is built 
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4.4 Modeling based on blast furnace molten iron temperature prediction 

Figures 5(a) and 5(b) illustrate the prediction results of the blast furnace molten 

iron temperature prediction model for the training and test datasets. These figures com-

pare the predicted and actual iron temperatures for 1500 training samples and 500 test 

samples, respectively. As shown in the plots, the predicted values align closely with the 

actual values, exhibiting minimal differences. This demonstrates that the model 

achieves satisfactory prediction performance. 

 

 

Figure 5 (a). Comparison of training set and actual values of iron temperature 

 

 

Figure 5(b). Comparison of the test set and actual values of iron temperature 

4.5 Modeling based on blast furnace molten iron t silicon content 

To evaluate the predictive performance of the model, the developed blast furnace 

iron-silicon content prediction model was evaluated using both the training and test 

datasets. Figures 6(a) and 6(b) display the prediction results for the training and test 
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datasets of the blast furnace iron-silicon content prediction model, respectively. The 

simulation results indicate that the predicted values closely follow the trend of the ac-

tual values, with minimal differences. This demonstrates that the developed model 

achieves satisfactory predictive performance. 

 

 

Figure 6 (a). Comparison of the training set and actual values of molten iron silicon 

content 

 

Figure 6(b). Comparison of the test set and actual values of molten iron silicon con-

tent 

5. Comparison of models and analysis of results 

5.1 Comparison of model prediction effects 

To verify the effect of the LAOA-TSVR model. It is compared with three algo-

rithms models ：BP (learning rate: 0.05, max training iterations: 1000, required accu-

racy: 1e-5, min error: 0.005), SVR(kernel='rbf', degree=3, gamma='auto_deprecated', 

coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, probability=False, 
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cache_size=200, verbose=False, max_iter=-1, class_weight=None, decision_ func-

tion_ shape='ovr', random_state=None) and TSVR(Epsilon1=0.1, Epsilon2=0.1, C1=1, 

C2=1, kernel_type=0, kernel_param=1, regulz1=0.0001, regulz2=0.0001,estima-

tor_type="regressor"). The error distributions of the predicted and actual values of the 

four models were determined as shown in Figure. 7 and Figure. 8

 

Figure 7. Comparison of error between predicted and actual values of molten iron 

temperature for different models 

 

Figure 8. Comparison of errors between predicted and actual values of molten iron 

silicon content for different models
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5.2 Comparative analysis of models 

To correctly assess the predicting performance of the LAOA-TSVR model, the re-

search group employed SSR/SST and SSE/SST to calculate the model's fitting result. 

The closer the SSR / SST value is to 1, the closer the model prediction value is to the 

real value's amount of fluctuation; and the lower the SSE /SST value, the better the 

model prediction value matches the genuine value. Then in order to verify the predic-

tion effect of the constructed model more comprehensively, the LAOA-TSVR model 

was compared with the three models of BP, SVR and TSVR. MAE and RMSE were 

used as error indicators to analyse the accuracy of the model, and the results of the 

comparison of the prediction performance of iron temperature and iron silica contentare 

shown in Table 3. 

SSE/SST= ∑
(y

i
-ŷ

i
)
2

∑ (y
i
-y

i̅
)
2m

i=1

m

i=1

(23) 

SSR/SST= ∑
(ŷ
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-y

i̅
)
2

∑ (y
i
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i̅
)
2m

i=1

m

i=1

(24) 

MAE =
1

m
∑  

m

i=1

|ŷ
i

− 𝑦𝑖| (25) 

RMSE = √
1

m
∑  

m

i=1

(𝑦𝑖 − ŷi)
2 (26)

 

Where: 

m: Number of samples; 

y
i
: Actual value of the test sample; 

y
i̅
: Mean value of the test sample; 

ŷ
i
: Predicted value of the mode. 
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Table 3. Evaluation indicators for the model

 

Table 2 demonstrates that the SSR/SST values of the four methods (BP, SVR, 

TSVR, and LAOA-TSVR) increase in turn while the SSE/SST values decrease. The 

LAOA-TSVR model has the greatest fitting degree and prediction precision. 

To determine the extent to which the model met the aim, the task force utilized HR 

performance metrics to calculate the prediction accuracy of the models, as illustrated in 

Figure 9 and Figure 10. 

𝑃𝑆 ∗ (100% − 𝑘) < 𝑃𝑦 < 𝑃𝑆 ∗ (100% + 𝑘) (27) 

Where: 

𝑃𝑆: Actual blast furnace iron temperature and molten iron silicon content; 

𝑃𝑦: Predicted blast furnace molten iron temperature and molten iron silicon content; 

K: Accuracy rate of 5%, 0.5%. 

𝐻𝑅 =

(|𝑦𝑖 −
^
𝑦

𝑖
| ≤ 𝑛𝑒)

𝑛
∗ 100% (28)

 

Figure 9 and Figure 10 show that the model for predicting blast furnace molten 

iron temperature within a ±5% error range has the following ratio from high to 

ground: LAOA-TSVR, TSVR, SVR, BP, and the prediction rate for the molten iron 

silicon content within the errors range ± 0.5% from high-to-ground, the following: 

LAOA-TSVR, TSVR, SVR, BP. This means that the model has a greater predictive 

effect than other models under the same conditions. 

 

Model Index BP SVR TSVR LAOA-TSVR 

Prediction model 

of molten iron temperature  

SSR/SST 0.62 0.67 0.78 0.91 

SSE/SST 0.74 0.65 0.57 0.30 

RMSE 12.55 11.45 10.38 8.94 

MAE 13.86 10.66 9.83 6.05 

Prediction model 

of molten iron silicon content  

SSR/SST 0.61 0.67 0.75 0.90 

SSE/SST 0.76 0.67 0.59 0.31 

RMSE 0.03 0.03 0.02 0.01 

MAE 0.03 0.02 0.01 0.01 
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Figure 9. Hit rate of molten iron tem-

perature prediction model using four al-

gorithms 

Figure 10. Hit rate of molten iron sili-

con content prediction model using four 

algorithms 

 

6. Application and Validation 

To verify the practical application effect of the established LAOA-TSVR predic-

tion model, the model was applied to the actual production process of blast furnace in 

an iron mill for a total of 200 furnaces, and the results are shown in Figure 11 and Figure 

12. According to the final hit rate, we know that the hit rate of blast furnace molten iron 

temperature and molten iron silicon content within the error range of ±5% and ±0.5% 

are 92.12% and 92.53%, respectively, and the corresponding double hit rate is 85.32%. 

The results can well meet the actual production needs of an iron mill and can provide 

guidance for actual production. 

 

Figure 11. Practical application effect of molten iron temperature prediction model  
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Figure 12. Practical application effect of molten iron silicon content prediction model 

7. Conclusion 

According to the working conditions of actual blast furnace production, a predic-

tion model of blast furnace molten iron temperature and silicon content based on 

LAOA-TSVR was established, and the conclusions are as follows: 

(1) The proposed LAOA-TSVR model addresses the problems of poor accuracy 

and multiple local optimal solutions in the prediction process of blast furnace molten 

iron temperature and silicon content in traditional research, while also improving the 

model's prediction accuracy, generalization ability, and operation speed. 

(2) The LAOA-TSVR model was applied to the actual production of 200 furnaces. 

The results show that the hit rates for blast furnace molten iron temperature and molten 

iron silicon content within ±5% and ±0.5% are 92.12% and 92.53%, respectively. The 

corresponding double hit rate (Both parameters are met at the same time) is 85.32%. 

(3) By comparing the prediction effects of three typical models, the results show 

that the LAOA-TSVR model has the highest evaluation index. This indicates that the 

LAOA-TSVR model offers the best prediction performance and can provide practical 

production guidance for a blast furnace. 
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Figure 9. Hit rate of molten iron temperature prediction model using four algorithms 

Figure 10. Hit rate of molten iron silicon content prediction model using four 

algorithms 
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Figure 12. Practical application effect of molten iron silicon content prediction model 
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