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Abstract  

The main task of basic oxygen furnace (BOF) steelmaking is 

dephosphorization, thus the prediction and control of End-point phosphorus 

content of molten steel is of great significance. Four machine learning 

regression models (Lasso, Random Forest, Xgboost, and Neural Network) 

were established to predict end-point phosphorus content of molten steel in 

BOF according to raw and auxiliary material data, process parameters, and 

data of production quality. The prediction effect of four models were further 

compared, and their prediction results were interpreted via model’s 

interpretability and Permutation Importance Method. Results showed that 

compared with linear regression and Neural Network regression model, two 

kinds of ensemble tree model had higher prediction accuracy, better stability 

in small data sets, and lower requirements on data pre-processing. The 

influencing factors of end-point phosphorus (P) content in BOF were ranked 

by importance as: Tapping temperature > Turning down times > Steel scrap 

amount > Operation habits of different work groups > Blowing oxygen 

amount > Sulfur and Phosphorus content of molten iron > Addition amount 

of lime, limestone, and light-burned dolomite in slagging agents > Slag-

splashing amount. 
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1 Introduction 

Rising cost of raw material and fierce market competition requires iron and steel 

enterprises to ceaselessly exploit their potential, optimize producing process, and refine 

operations to realize effective, low-cost and greenized manufacturing[1]. The final 

purpose of BOF steelmaking, a significant step in steelmaking process, is to obtain molten 

steel with qualified constitution and temperature while dephosphorization, as the core 

mission in steelmaking, is of crucial importance to reach greenization and high efficiency. 

Common research methods tend to evaluate and analyze the manufacturing process via 



 

 

establishing dephosphorization models. Metallurgical practitioners have proposed 

various mechanism models and empirical formulas based on metallurgical principles and 

their own experience[2-5]. However, these models and formulas can neither accurately 

predict end-point phosphorus (P) content in BOF nor analyze the dephosphorization 

process in depth because of their distinguished production environment and the multi-

dimensional, multi-variable, non-linear, uncertain, and various factor-coupling correlated 

nature of most steps in BOF steelmaking[6]. A new solution is in urgent need. 

Development and application of machine learning inspired metallurgical 

practitioners to apply new technologies in addressing related issues such as end-point P 

content prediction in BOF process etc. Li et al. [7] established a model based on 

Levenberg-Marquardt algorithm of BP neural network to predict the end-point 

phosphorus (P) content in BOF process, which increased model’s rate of convergence 

when avoiding the problem of local minimum. Wang et al. [8] hybridized weighted K-

means clustering algorithm and GMDH (Group Method of Data Handling) polynomial 

neural network techniques, and built a prediction model of end-point P content in BOF 

that is more advantaged than BP Neural Network. He et al.[9] adopted principal 

component analysis to reduce dimension of the factors influencing the prediction, thus 

proposing a prediction model of end-point P content in BOF based on PCA and BP Neural 

Network. Sala et al.[10] used Ridge Regression and two kinds of ensemble tree model to 

form two data-driven prediction models for end-point components and temperature in 

BOF, one of which contained time series data while the other did not. Results showed the 

model with time series data had higher prediction accuracy. Zhou et al.[11] set steelmaking 

process and end-point P content as the constraint condition of BP neural network based 

on metallurgical rules, and established a prediction model of end-point P content in BOF 

based monotone-constrained back-propagation (BP) neural network. Li et al.[12] applied 

Least Squares Twin Support Vector Machines to classify end-point phosphorus partition 

ratio in BOF steelmaking based on slag components and tapping temperature, which 

achieved a relatively high prediction accuracy. Li et al.[13] selected 11 basic machine 

learning models and integrated them with Averaging and Stacking, further improving the 

prediction effect on steel quality. 

In addition to the prediction of the end point phosphorus content of the converter, 

many scholars have also proposed new methods for the determination of other end point 

components. Liu et al.[14] proposed a novel method based on accurate and fast multi flame 

features extraction and general regression neural network (GRNN). Wang et al.[15] 

combined the characteristics of genetic algorithm and BP neural network completely, and 

a combined GA-BP neural network model was established. Chang et al.[16] proposed a 

new multi-channel graph convolutional network to integrate these correlations with the 

process variables together for a more accurate prediction model. Gu et al.[17] proposed an 

improved CBR model using time-series data (CBR_TM) to predict the end-point carbon 

content and temperature in the converter according to the data types of process parameters. 

Song et al.[18] established an intelligent case-based hybrid converter model to predict the 

converter endpoint and process operations. 

Existing researches concern more about models’ prediction accuracy and have 

achieved their purpose from perspective of data, features, and algorithms etc. Yet neural 

network models have poor interpretability, which makes metallurgical practitioners 

unable to conclude metallurgical rules from these models or apply them in improving 

manufacturing process. 



 

 

The ceiling of machine learning is determined by data and their features, and can 

only be approached by models and algorithms. Different data processing strategies have 

different points, and can deal with different issues. Researchers should pay more attention 

to algorithm’s interpretability and make purpose-oriented choice. This study established 

two kinds of ensemble tree models (Random Forest [RF] and Xgboost [XGB]), one neural 

network model [BPNN] and one linear regression model (Lasso) based on integrated and 

processed raw data from BOF steelmaking. Furthermore, results of four models were 

compared and interpreted from the perspective of metallurgy. 

2 Models Adopted 

2.1  Ensemble methods and ensemble tree regression models 

Bagging randomly selected n sampling sets from the original data set by Bootstrap 

sampling, based on which n weak learners can be trained. The final strong learner can be 

obtained through conducting ensemble strategy on weak learners. RF is a representative 

algorithm in Bagging, and its random selection on features endows it with better 

generalization capability[19]. Besides, RF may sort all features by their importance to the 

predicted target while holds interpretability. 

Boosting, on the other hand, will train a weak learner 1 from the training set based 

on the original weight, and adjust weight of samples according to weak learner 1’s 

learning error rate to obtain a weak learner 2. Repeat this process till the number of weak 

learners reach n set in advance. The final strong learner comes by integrating these n weak 

learners via ensemble strategy. Different from Adaboost, Gradient Boosting Decision 

Tree (GBDT) fit the residual in every iteration to realize as less sample loss as possible. 

Xgboost is an improved GBDT, which takes second-order Taylor expansion for better 

accuracy and excels in its higher operational efficiency, effective processing of missing 

values, and great generalization ability[20]. 

2.2  Neural network regression 

BP neural network (BPNN) is a kind of multilayer feedforward neural network 

whose learning process is composed by signal forward-propagation and error back-

propagation[21]. Specifically speaking, for neural network models with only one hide layer 

BPNN, it mainly works in two stages: for the first stage, sample’s features are input from 

the input layer, and the signal will be propagated forward through the hide layer and reach 

the output layer; for the second stage, the error between network’s actual and expected 

value will be propagated backward from the output layer to the hide layer, then to the 

input layer. Weight of neurons in all layers are adjusted based on errors. The target can 

be achieved in weight adjustment of iterative calculation round by round. 

2.3  Lasso regression 

L1-regularized linear regression is usually called Lasso regression. Compared with 

common linear regressions, Lasso regression adds a L1-regularized term to loss function. 

In L1-regularized term, there is a constant coefficient α regulating the mean square error 

term and the weight of regularized term in loss function. Specific loss function of Lasso 

regression is as Eq. (1): 
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Number of samples is expressed as n, constant coefficient as α, L1 norm as ||θ||1. 

Lasso regression may minimize coefficient for some features, even lowering some 

with relatively small absolute value to 0. This would improve model’s generalization 

capability[22]. As a linear regression model, Lasso can select different features to simplify 

influencing factors and improve model’s interpretability, which will be of great 

convenience for metallurgical practitioners’ understanding of steelmaking process. 

3 Model establishment 

3.1  Feature selection and data processing 

Data in this paper are derived from manufacturing data of one enterprise’s BOF 

plants. The steelmaking process in BOF is shown in Figure 1. Figure 1a is the slag-

splashing furnace protection of BOF. Slag-splashing operation concerns mainly slag-

splashing timing and blowing nitrogen amount. These two factors indirectly reflect the 

internal outline of BOF and physical and chemical properties of slag at early stage, which 

is related to dephosphorization. Figure 1b refers to the loading stage in steelmaking. The 

change of scrap ratio will influence bath temperature, slagging rate, slag components, and 

slag-splashing effect etc. at the same time, influencing dephosphorization directly or 

indirectly; besides, the components, temperature, and adding amount of molten iron are 

initial conditions that directly influences dephosphorization process. Figure 1c represents 

the blowing stage, the most important stage of dephosphorization, of steelmaking. It 

mainly affects the process by oxygen blowing operation and drossing process, in which 

the former one determines the dynamic condition while the latter one determines the 

thermodynamic condition by slag’s physical and chemical properties. These two factors 

act and coupling with each other. What is more, turning down times indicates the effect 

of single/double slag operation and reblowing/un-reblowing on dephosphorization. Staff 

in different groups have different operation habits and experience, especially in the 

adjustment of oxygen lance height and the adding moment of various slagging agents. At 

data level, such differences will lead to fluctuation in the distribution of same factor in 

different groups. 



 

 

 

Figure 1 Flow chart of steelmaking process in BOF. a Slag splashing; b Scrap and hot metal charging; 

c Blowing and smelting; d Tapping 

Based on these facts, all features in production data of BOF that may influence target 

prediction were considered in this paper, mainly the addition of raw and auxiliary 

materials, molten iron condition, and operation coefficients in manufacturing process etc. 

Details are as follow: Work group, Carbon content in molten iron, Silicon content in 

molten iron, Manganese content in molten iron, Phosphorus content in molten iron, Sulfur 

content in molten iron, Temperature of molten iron, Quality of molten iron, Quality of 

steel scrap, Steel output, Oxygen blowing time, Oxygen blowing amount, Turning down 

times, Lime, Limestone, Raw dolomite, Iron ore, Light-burned dolomite, Temperature of 

the first turning-down, Reblowing time, Tapping temperature, Nitrogen blowing amount, 

Slag-splashing time, Iron mixing times. Except for work groups, which belong to 

character data, all other process data are numerical data. Within these numerical data, 

'Pour furnace' and 'Iron mixing times' are integers (discrete ones) larger than 0, while 

other data are continuous values. All process data do not include unstructured data such 

as time series data or image data. Brief notes for all features are listed in Table 1. 

Table 1 List of Influencing Factors and Their Brief Notes 

Influencing factors 
Brief 

notes 
Influencing factors 

Brief 

notes 

Work group A F1 Oxygen blowing amount F14 

Work group B F2 Turning down times F15 

Work group C F3 Lime F16 

Carbon content in molten iron F4 Limestone F17 

Silicon content in molten iron F5 Raw dolomite F18 

Manganese content in molten iron F6 Iron ore F19 

Phosphorus content in molten iron F7 Light-burned dolomite F20 

Sulfur content of molten iron F8 Temperature of the first turning-down F21 

Temperature of molten iron F9 Reblowing amount F22 

Molten iron amount F10 Tapping temperature F23 

Steel scrap amount F11 Nitrogen blowing amount F24 

Steel output F12 Slag splashing time F25 

Oxygen blowing time F13 Iron mixing times F26 

(a) (b)

(c)

(d)

Slag splashing Scrap and hot metal charging

TappingBlowing and Smelting

N2

O2

Slag

Solid slag

Slagging agent 

melting

Steel fluid

Scrap

Hot metal



 

 

Extreme outliers were manually removed from original data based on feature 

distribution map and manufacturing experience while other outliers were removed 

according to 3σ principle. Missing values mainly include unrecorded data and null data. 

Unrecorded data, such as temperature of molten iron and steel scrap amount, were filled 

by the average value. Null data, such as Raw dolomite and Addition of Limestone, were 

filled by 0; or by the default value, which was 1, such as Turning down times and Iron 

mixing times. Work group A, B, and C were dumb-coded and expressed as [(1,0,0), 

(0,1,0), (0,0,1)] respectively. Eq. (2) was adopted for z-score standardization of data 

features. 
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Figure 2 shows correlation efficient among each feature. The correlation between 

each variable, and between variables and their predicted targets, were analyzed by heat 

map. Results can provide references for engineers and technicians in process optimization. 

 

Figure 2 Correlation efficient among feature variables 

3.2  Model training 

All model hyperparameters were determined using a grid search and cross-validation. 
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The main hyperparameters of RF are “n_estimators”, “min_samples_split”, 

“min_samples_leaf”, “max_depth”, “max_features”. “n_estimators” represents the 

number of trees in the forest. If it is too small, the model would be easy to underfitting. 

When the number of trees exceeds a certain level, its improvement would be limited. In 

this paper, the number varied between 20 to 300, with a step size of 10. 

“min_samples_split” represents the minimum number of samples required to split an 

internal node. It was set between 2 to 32 with a step size of 2. “min_samples_leaf” 

restricts the minimum number of samples for a leaf node. It was set between 1 to 16 with 

a step size of 1. “max_depth” were not limited to pursue a smaller training error. These 

three parameters were used to avoid overfitting to improve the generalization of the model. 

“max_features” can be set to “auto”. Only when the number of features is large should 

we consider limiting the maximum number to control the generation time of the decision 

tree. All other hyperparameters were set to default.  

The following hyperparameters are optimal for RF regression model. The number n 

of weak learners was set as 250. Minimum samples split was set as 2, and minimum 

samples leaf nodes as 8.  

For XGBoost, the main hyperparameters needed to be adjusted were “n_estimators”, 

“max_depth”, “min_child_weight”, “gamma”, and “learning_rate”. Other framework 

parameters, booster and objective, were just set as default parameters in the regression 

task. The “learning_rate” shrinks the feature weights to make the boosting process more 

conservative after each boosting step. Smaller “learning_rate” means more iterations of 

the weak learners to reach the model's optimal results, but it would take longer time. In 

this paper, we fix a learning rate first, and adjust “n_estimators”. The “learning_rate” was 

set at 0.01~0.3. “n_estimators” represents the number of trees, and the model would be 

too complex when it is too large. It was set between 10 to 200 with a step size of 10. 

“max_depth” controls maximum depth of a tree. Increasing this value will make the 

model more complex and more likely to overfit. It was set between 2 to 20 with a step 

size of 2. “min_child_weight” represents minimum sum of instance weight (hessian) 

needed in a child. The larger it is, the more conservative the algorithm will be. “gamma” 

is an important hyperparameter used by XGB to prevent overfitting, and it represents the 

minimum loss reduction required to make further partition on a leaf node of the tree. The 

larger “gamma” is, the more conservative the algorithm will be. The parameter was 

gradually increased from 0 to 1. Above hyperparameters are the main objects of 

adjustment. Only when the model remains overfitting after their adjustment, other 

hyperparameters would be considered. 

The following hyperparameters are optimal for XGB regression model. Subtree 

number was set as 120, weight reduction factor for each weak learner as 0.08, max depth 

of tree structure as 6, minimum child weight as 90, and gamma as 0. 

BP neural network structured as a hidden layer with 15 neurons. Experimentally, 

more complex structure tends to lead to model overfitting. The activation function was 

ReLU function because it is faster to train, avoiding the problem of vanishing gradients 

and it is suitable for most neural networks, especially MLP and CNN. “max_iter” is the 

maximum number of iterations. It was set between 10~1000. The solver was “lbfgs”. For 

small datasets, however, “lbfgs” can converge faster and perform better. If the solver is 

“lbfgs”, the regressor would not use minibatch and “learning_rate”. “Alpha” stands for 

strength of the L2 regularization term. It prevents the neural network from overfitting and 



 

 

was set between 0.00001~0.1, and the search followed the logarithemic scale. The final 

L2 regularization term α=0.01. 

The Lasso regression model only needs to be optimised for the hyperparameter 

“alpha”. It constant that multiplies the L1 term, controlling regularization strength. It 

ranged from 0.00001 to 10, and the final L1-regularized term α=0.00005. 

All four models suit regression issues with multiple features, and their effects were 

all evaluated by Eq. (3), mean absolute error (MAE), and Eq. (4), mean squared error 

(MSE). 
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4 Comparison of model’s prediction results 

Figure 3 compared evaluation indexes MAE and MSE of four models. Two indexes 

were obtained through simple cross validation. Simple cross-validation here refers to 

cross-validation performed only once in data split. It is shown in Figure 3 that MAE and 

MSE of two ensemble learning models were smaller than that of Lasso and BPNN model. 

Specifically speaking, Lasso surpassed BPNN while RF slightly outrun XGB. This is 

because that compared with linear regression models, ensemble models work based on 

cart decision tree, which endows it with a higher accuracy in regression. Besides, multi-

model ensemble methods, Bagging and Boosting, were adopted by two ensemble models, 

which improved their fitting accuracy and generalization capability at the same time and 

guaranteed their better performance than single-model BPNN and Lasso. As for Lasso 

model, it surpassed BPNN since it can reduce features and avoid overfitting issue of linear 

regression for its addition of L2-regularized term. Compared with the other three models, 

BPNN’s performance may be limited by restricted sample amount, which lowered its 

fitting accuracy. 

It should be noted that the actual end-point P content is 0.030 % on average, and the 

minimum absolute error of prediction is 0.0046 %, which is 15.3 % off the average. In 

actual production process, the P content is measured by direct reading spectrometer, 

which also causes certain errors in the sampling and location of the measurement points. 

From the stand of converter steelmaking’s requirements, such error is acceptable. 

 

Figure 3 Evaluation indexes for four models 
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Figure 4 showed the learning curves of four models evaluated by index MAE (score). 

Cross-validation score comparison results of four learning curves in Figure 4 were in line 

with their performance in Figure 3, yet they all had lower error than in Figure 3 that 

adopted single cross validation. This is because learning curves were drawn with cross-

validation conducted via ShuffleSplit function (n_splits=100, test size=0.2), which means 

every point’s score was calculated as the average error of 100 random samplings, thus 

lowering error fluctuation. Combing results of Figure 3 and Figure 4, accuracy of 

different models was ranked as RF > XGB > Lasso > BPNN. 

 

Figure 4 Model learning curves with multi-sampling 

Figure 5 showed the learning curves with single sampling. That means all points’ 

scores were obtained by one sampling, i.e. the split n was set as 1 in ShuffleSplit function. 

It was shown in Figure 5a and Figure 5b that the learning curves of ensemble tree models 

tend to smooth out rapidly, reflecting RF and XGB’s stability in processing this issue 

type. Their performance remained good in small data set. Figure 5c and Figure 5d 

indicated that BPNN and Lasso required at least 1,500 items of data. Lasso showed bad 

stability in relatively small data set and BPNN’s learning curve gradually converged when 

data reach 1,600 items. All these suggested BPNN and Lasso had higher requirements on 

data amount, and larger error in small data set. RF and XGB, on the other hand, did not 

need normalization or standardization for original data. XGB algorithm can deal with 

missing values by itself, making its application easier. Considering results above, two 

kinds of ensemble tree models had better stability in small data set and lower requirements 

on data processing than BPNN and linear regression model. 

(a) (b)

(c) (d)



 

 

 

Figure 5 Learning curves with single-sampling 

5 Model interpretation and analysis 

Metallurgical practitioners mostly optimize the manufacturing process by selecting 

influencing factors and controlling variables based on their own experience, which 

requires much time and effort. Yet with machine learning, technicians may realize 

optimization by integrating evaluation results in multi-models, selecting influencing 

factors and determining their priorities. 

Figure 6 compared the importance of all influencing factors. RF and XGB measured 

their importance (parameter as gain) via the extent of gain brought by split of different 

features based on the decision tree. Larger gain reflects greater importance. BPNN 

measured them by the Permutation Importance, which means to observe the change of 

index after permuting one certain feature. Larger change of index refers to higher 

importance[23]. For better comparison, importance calculation results of RF, XGB, and 

BPNN model were unified into percentage and drawn as a histogram. 

(a) (b)

(c) (d)
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Figure 6 Comparison of different influencing factor’s importance 

On one hand, three models have different mathematics theories and basis in 

importance calculation. On the other hand, each model evaluates via relatively single 

index that is distinguished from each other. These led to different importance sorting of 

all features, and results of one model cannot represent the actual situation in manufacture 

practice. Therefore, the average value of RF, XGB, and MLP was taken as the 

comprehensive and final evaluation on feature’s importance. Coefficient in linear 

regression was adopted to judge whether the feature’s influence was positive or negative. 

What should be mentioned is that positive influence here means higher coefficient value 

relating to higher end-point P content, but it is actually a negative influence in 

metallurgical practice. Figure 7 showed comprehensive importance evaluation results. 

The comprehensive evaluation score was shown in left vertical coordinate, and the 

coefficient of linear regression model drawn in point and line chart whose values can be 

checked by right vertical coordinate. 
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Figure 7 Comprehensive evaluation on feature’s importance 

All influencing factors were divided into 11 groups based on BOF operations. As 

shown in Figure 7, the importance of all groups were ranked as: Tapping temperature in 

BOF (F21, F23) > Turning down times (F15) > Material addition and Steel output (F10, 

F11, F12) > Work groups (F1, F2, F3) > Oxygen blowing operation (F13, F14) > Molten 

iron components (F4~F8) > Slagging agents (F16~F20) > Slag-splashing operation (F24, 



 

 

F25) > Reblowing amount (F22) > Molten iron temperature (F9) > Iron mixing times 

(F26). 

Based on the sorting of operation processes and coefficient of linear regression 

model showed in Figure 7, it can be concluded that the first group, including F21 (First 

turning down temperature) and F23 (Tapping temperature), contains the most significant 

influencing factors. These two temperatures differ when the composition and temperature 

of molten steel are not qualified. For qualified ones, First turning down temperature will 

be the Tapping temperature. But for those who do not, further operation will be conducted 

for adjustment, and the temperature detected then is the Tapping temperature. 

Temperature plays an important role in dephosphorization. The higher the temperature is, 

the worse dephosphorization will be[24]. The coefficient of both F21 (First turning down 

temperature) and F23 (Tapping temperature) in the linear regression model were the 

maximum positive values, suggesting higher Tapping temperature is related to larger end-

point P content, which is in line with manufacturing experience and dephosphorization 

mechanism. F15 (Turning down times) of the second group also had relatively greater 

importance. F15 larger than 1 indicated the possibility of reblowing or second slag 

formation blowing (double-slag process). Turning down times was positively related to 

end-point P content. Combing Figure 2’s correlation analysis, Turning down times was 

most strongly correlated with work group 3, which suggested their poorer stability than 

other work groups. In the third group, F10 (Molten iron amount), F11 (Steel scrap 

amount), and F12 (Steel output), linear regression coefficient indicated the addition of 

steel scrap amount was negatively related to end-point P content while Steel output is in 

positive relation. Since Lasso model can reduce variables, it lowered Molten iron 

amount’s coefficient to 0 (Molten iron amount and Steel output have collinear relation), 

which means staff only need to optimize Steel scrap amount. The fourth group, work 

group also played a certain role. To the end-point P content, the influence of work group 

A was negative, of group B was insignificant, of group C was positive. This suggested 

work group C should learn more experience from group A. As for the fifth group, Oxygen 

blowing operation, containing F13 (Oxygen blowing time) and F14 (Oxygen blowing 

amount), influenced the predicted object to a certain extent. Longer F13 was related to 

higher oxidation in molten pool, thus lower end-point P content. F14 is in positive 

influence for end-point P content, which may because excessive F14 will lead to more 

rapid temperature rising in molten pool, inhibiting dephosphorization or even trigger 

rephosphorization[25]. This indicated staff should to pay more attention to the control of 

oxygen blowing amount. The sixth group included molten iron components F4~F9. In 

molten iron, S and P had positive effect on end-point P content while others did not have 

significant influence, suggesting technicians can improve dephosphorization effect by 

controlling molten iron components. The seventh group discussed the influence of 

slagging agent addition, among which the most significant ones were lime, limestone, 

and light-burned dolomite. All these were negatively related to end-point P content. For 

the eight group, including F24 (Nitrogen blowing amount) and F25 (Slag splashing time), 

it was showed that higher F25 may raise the oxidation of molten pool at primary stage, 

and assist dephosphorization in early stage. Both importance score and linear regression 

model coefficient showed that F9 (Molten iron temperature), F22 (Reblowing amount), 

and F26 (Iron mixing times) contained in last three groups had relatively small influence 

on end-point P content. 

However, in Lasso model, the features of coefficients close to 0 may exist in two 

cases. One is caused by the existence of L1 regular term. This can be solved by reducing 

the hyperparameters “Alpha”. When the coefficient deviates from 0, we can clarify the 



 

 

extent and direction of the influence, but the model's generalization capability may also 

be impaired at this time. Another situation is that the feature itself has little influence on 

end-point P in the linear regression model. But that only means this feature is unimportant 

just in Lasso model. The judgement of their influencing extent needs to be coupled with 

the importance ranking given by the other three algorithms. 

In conclusion, removing factors with relatively small influence and those cannot be 

improved in every group, factors needed to be concerned are ranked as: Tapping 

temperature in BOF > Turning down times > Steel scrap amount > Group’s operation 

habit > Oxygen blowing amount > S and P content in molten iron > addition of lime, 

limestone, light-burned dolomite in slagging agents > Slag splashing amount. Among all 

these, the former 6 ones had positive influence while the latter two had negative one. 

6 Conclusions 

1. Influencing factors of end-point P content mainly includes raw and auxiliary material 

addition, condition of molten iron, coefficients of process operation, and work group’s 

operation habits. Four machine learning models were established to predict the end-

point P content in BOF. The accuracy of four models were ranked as: RF > XGB > 

Lasso > BPNN. Besides, compared with BPNN and linear regression model (Lasso), 

two kinds of ensemble tree models had smaller error and better stability in small data 

set, and lower requirements on data processing. 

2. Through comprehensive consideration on evaluation results of RF, XGB, BNPP, and 

Lasso model, influencing factors of end-point P content in BOF were ranked by 

importance as: Tapping temperature in BOF > Turning down times > Steel scrap 

amount > Work group’s operation habits > Oxygen blowing amount > S and P content 

in molten iron > addition of lime, limestone, light-burned dolomite in slagging agents > 

Slag splashing amount. Among all these, the former six were of positive influence 

while the latter two were of negative influence. The optimization of manufacturing 

process can be guided by interpreting prediction results of these models. 

3. BOF steelmaking is a complicated process. There are still bunches of key processing 

data that cannot be taken into regression calculation directly, including voiceprint data 

in sonar slag-reducing technique, mouth flame image data of converter, and time series 

data such as oxygen lance position, lime loading model, bottom blown pattern, and 

change of gas composition etc. These data contain important information of changes 

in the whole metallurgy process. An effective processing or conversion method for 

them is in urgent need. Bringing these key data into regression analysis can help 

engineers and technicians further understand and analyze steelmaking process. 
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