CHARACTERIZATIONS AND BORON DIFFUSION MODELLING ON THE AISI H13 STEEL

M. Ortiz-Domínguez a , M. Keddam b, *, Á.J. Morales-Robles c

^a Autonomous University of Hidalgo State, Escuela Superior de Ciudad Sahagún-Mechanical Engineering,

Hidalgo, México
^b Laboratory of Materials Technology, Faculty of Mechanical Engineering and Process Engineering, USTHB,

Algiers, Algeria
Autonomous University of Hidalgo State, Área Académica de Ciencias de la Tierra y Materiales- Instituto de Ciencias Básicas e Ingeniería, Hidalgo, México

(Received 23 April 2024; Accepted 19 November 2024)

Abstract

A kinetic approach accounting for the linearity of boron profiles through the boronized layers on AISI H13 steel was developed. It aims to track the temporal evolution of the thicknesses of the FeB and (FeB + Fe2B) layers by considering new expressions for the mass balance equation at each growth front. These surface layers were generated by pack boronizing of AISI H13 steel in the temperature range of 1123 to 1273 K for duration ranging from 2 to 8 h. Finally, this linear model has been validated for two other sets of processing parameters (1323 K for 4.5 and 8.5 h). Iso-thickness diagrams were also proposed to optimize the thickness of the layers for targeted industrial usage.

Keywords: Boronizing; Borides; Diffusion model; Activation energy; Contour diagram

1. Introduction

Boriding is a well-known surface treatment method in industrial sectors aimed at improving the properties of surface-hardened layers produced on various metals [1-3] and alloys [4, 5] especially highalloy steels [6, 7]. This process involves heating the material within the typical temperature range of 800- 1050 °C for 0.5-10 h to create boron compounds with the host metal as compact layers, as well as forming precipitates inside them via the diffusion process of boron atoms re[sultin](#page-10-0)g from a bo[ro](#page-11-0)[n-r](#page-11-1)ich medium. The benefits of [app](#page-11-2)[ly](#page-11-3)ing the boronizing process include increasing the surface hardness of the produced layers, ensuring resistance to wear, and enhancing the ability to withstand corrosion. Many boriding methods are implemented in laboratories, but few are applicable in industrial sectors due to certain shortcomings. One can cite liquid boriding with and without electrolysis, gas boriding, plasma boriding, boriding in fluidized beds, powder or paste boriding, and pack boriding assisted with electrical fields. It is noted that powder pack boriding is the far preferred process for treating steels in accordance with

industrial requirements. The AISI H13 tool steel is well-suited for use in both hot and cold work tooling. Its outstanding hot hardness provides resistance against thermal fatigue cracking, which can occur due to repetitive heating and cooling in hot work environments. With its high toughness and strong resistance to thermal fatigue cracking, the AISI H13 steel stands as the desired option for a range of hot work tooling applications. Nonetheless, to increase its surface hardness and wear resistance in extreme working conditions, experts highly recommend employing the boriding process to achieve this goal. By optimize the thickness of the layers to meet the requirements of industrial applications, modeling boriding kinetics is crucial. Therefore, various mathematical approaches have been reported in the literature to achieve this goal. These approaches include deterministic models [6, 8-13] a stochastic model [14] and non-deterministic models [15, 16].

In this study, the boride layers on AISI H13 steel were characterized through SEM observations and analyses to confirm the interphase morphology. XRD analysis was conducted to identify iron borides and metal [bori](#page-11-5)des. The surface h[ard](#page-11-2)[ness o](#page-11-4)f [the](#page-11-6) [bo](#page-11-7)ride

https://doi.org/10.2298/JMMB240423029O

Corresponding author: keddam@yahoo.fr

layers was determined through Vickers microhardness measurements to establish a microhardness profile.

Additionally, a kinetic approach known as the linear model was utilized to estimate the boron diffusion coefficients in iron borides. Boron activation energies in both phases (FeB and $Fe₂B$) were evaluated by determining two dimensionless constants, and then compared to values available in the literature. Finally, the linear model was verified by employing two additional processing parameters.

2. Material, boriding treatment and experimental techniques

The AISI H13 steel to be employed for boriding experiments had a nominal chemical composition (in weight percent) of 0.32-0.45% C, 0.20-0.50% Mn, 0.80-1.20% Si, 4.75-5.50% Cr, 1.10-1.75% Mo, 0.0- 0.03% P, 0.0-0.03% S, 0.0-0.3% Ni, 0.0-0.25% Cu and 0.80-1.20% V. The specimens subjected to this thermochemical treatment had a cubic shape with 10 mm side. Before the treatment, the samples were ground by employing SiC emery papers up to grit 2500 and being immersed in ultrasonic bath filled by n-heptane and ethanol for 20 min. The samples were placed inside a stainless steel container and embedded in the powder having a chemical composition of 33.5% B_4C , 5.4% KBF_4 and 61.1% SiC). The conventional furnace of brand Nabertherm N 250/85 HA was employed for heating the treated samples at considered temperatures for different time durations using Argon gas as a protective atmosphere. The selected boriding temperatures were 1123 K, 1173 K, 1223 K and 1273 K for 2 h to 8 h. Once the boriding treatment was finished, the samples were taken from the furnace and kept cooled in air to ambient temperature. The cross-sections of borided samples were polished according to the standard metallographic procedure for SEM examinations with Quanta 3D FEG-FEI JSM7800-JOEL coupled with EDS analyses. To do so, the EDS system used includes the X-Max Extreme which is a silicon drift detector (SDD). It is characterized by significant enhancements in low-energy sensitivity for the detection of light elements such as boron and carbon. With X-Max Extreme, both imaging and EDS performance can be obtained simultaneously and the EDS resolution approaches that of the SEM.

The Oxford Aztec Microanalysis System was employed to collecting and analyzing the EDS results. This system includes all the hardware and software tools to perform the targeted chemical analysis. The $eZAF$ (atomic number (Z) , absorption (A) and fluorescence (F)) algorithm was used to calculate the quantity of an element detected by the software application. Matrix correction algorithms ZAF were utilized for standard quantitative analysis in SEM-EDS analysis. The energy values of the K characteristic X-ray data of the elements were presented in the spectrum. The selected parameters for EDS settings comprise the following parameters acceleration voltage (5 or 10 eV), take-off angle (35°), live time (30 s) and resolution values. The image collected was at the specified resolution of (2024x800) with the selection of the resolution from a drop-down list in the Settings bar.

The Nital solution of 4 vol.% was used to etch the observed surfaces. An automatized procedure for measuring the thicknesses of the layers was carried out using a MSQ PLUS software. The values of the layer thicknesses were obtained based on fifty measurements on the selected cross-sections of boronized samples. The identification of boride phases at the surfaces of treated samples was done using diffractometer of brand (Equinox 2000) with Co-Ka radiation at $\lambda_{Co} = 0.179$ nm. The microhardness profile across the boronized layer was determined with a Vickers indenter under a load of 50 g and dwell time of 15 s.

3. Linear diffusion model

A recent method was proposed [9] to evaluate the boron diffusion coefficients in iron borides (FeB and $Fe₂B$) by applying the notion of linearity to the distribution of boron atoms through the boride layers. For this objective, new mass balance equation expressions were then developed. The time evolution of the boron distribution across the [Fe](#page-11-8)B and Fe₂B in a substrate that is saturated with boron atoms is seen schematically in Figure 1.

The highest and lowest concentrations in FeB are shown in Figure 1 as follows: $(=16.40 \text{ wt.} \%B)$ and $(=16.23 \text{ wt.} %)$. In contrast, the equivalent maximum and minimum concentrations in the $Fe₂B$ phase are equal to $(= 9 \text{ wt.} %)$ and $(= 8.83 \text{ wt.} %)$ [10]. The term C_{ads} refers to the boron active adsorbed quantity as determined by Yu et al. [20].

The variable $u(t)$ represents the thickness of the FeB layer, while $v(t)$ is the bilayer (FeB/Fe₂B) thickness. C_0 indicates the boron concentration's equilibrium value inside the substrate, [whi](#page-11-9)ch is negligible [21]. Equation (1) describes the change in thickness of FeB layer exp[ress](#page-11-10)ed by:

$$
u(t) = 2\varepsilon_{FeB} \sqrt{D_{FeB}(t - t_0^{FeB})}
$$
 (1)

With ε_{FeB} ε_{FeB} ε_{FeB} a dimensionless constant related to the diffusivity of boron in the same phase with t_0^{FeB} its

Figure 1. Schematic depiction of linear profiles of boron element when creating the bilayer (FeB/ Fe₂B)

corresponding incubation time. The bilayer thickness (FeB $+Ee$ ₂B) is given Equation (2):

$$
v(t) = 2\varepsilon_{Fe_2B} \sqrt{D_{Fe_2B}(t - t_0^{Fe_2B})}
$$
 (2)

With ε_{Fe_2B} a dimensionless constant and $t_0^{Fe_2B}$ the incubation time for the bilayer (FeB+ $Fe₂B$). This diffusion problem is subjected to the initial and boundary conditions stated as:

 $(at t = 0):$

$$
C_i(x) = 0
$$
, for $x > 0$, with $i = FeB, Fe_2B$ (3)

$$
C_{FeB} (x = 0) = C_{up}^{FeB}, \text{ for } C_{ads}^B > 16.40 \text{ wt.}
$$
⁹ (4)

$$
C_{FeB} (x = u) = C_{low}^{FeB}, \text{ for } C_{ads}^B < 16.23 \text{ wt.}
$$
⁹ (5)

$$
C_{Fe_2B}(x = u) = C_{int}^{Fe_2B}, \text{for } C_{ads}^B > 9.0 \text{ wt.}
$$
 (6)

$$
C_{Fe_2B}(x=v) = C_{low}^{Fe_2B}, \text{ for } C_{ads}^B < 8.83 \text{ wt.}\%
$$
 (7)

The equation for the mass balance, which represents the temporal evolution of the Fe₂B layer in a steady state was set up. Equation (8) can be used to represent the boron concentration profile in the $Fe₂B$ phase in this instance by taking into consideration the initial and boundary conditions given by Equations (6) and (7).

$$
C_{Fe_2B}(x) = C_{int}^{Fe_2B} + \frac{C_{low}^{Fe_2B} - C_{int}^{Fe_2B}}{v - u}(x - u)
$$
 (8)

In this case, the mass balance equation at the $(Fe,B/substrate)$ interface can be readily established by considering the entering mass flux of boron atoms from the side of $Fe₂B$ phase as

 $\tilde{i} = -D_{E_{R,R}}\{dC_{E_{R,R}}[x(t)]/dx\}$ i and also the leaving mass flux of boron atoms from the $Fe₂B$ phase in the direction of the substrate flux, which is provided by: J_{Fe_2B} $\left[x(t) \right]_{x=v}$ *i* \vec{J}_{Fe_2B} $\left[x(t) \right]_{x=v}$ $\vec{i} = -D_{Fe_2B}$ $\left\{ dC_{Fe_2B}$ $\left[x(t) \right] / dx \right\}_{x=v_{y1}}$ *J*_{*Fe}* $[x(t+dt)]_{x=x+dt}$, $\tilde{t} = -D_{Fe} \left\{ dC_{Fe} \left[x(t+dt) \right] / dx \right\}_{x=x+dt}$, $\tilde{t} = 0$ </sub>

Next step is achieved by Equation (9), which gives the mass balance obtained, which is needed to determine the dimensionless constant $\varepsilon_{F_{e_2}B}$:

$$
\left(\frac{C_{low}^{Fe_2B} + C_{int}^{Fe_2B} - 2C_0}{2}\right) \left(\frac{dx}{dt}\right)_{x=v} \tilde{i} = -D_{Fe_2B} \frac{dC_{Fe_2B}(x)}{dx} \bigg|_{x=v} \tilde{i}
$$
\n(9)

Equation (10) can be easily derived by replacing the time derivative of Equation (1) and spatial derivative of Equation (8) with regards to the diffusion distance into Equation (9):

$$
\left(\frac{C_{low}^{Fe_2B} + C_{int}^{Fe_2B} - 2C_0}{2}\right) \varepsilon_{Fe_2B} \sqrt{\frac{D_{Fe_2B}}{\left(t - t_0^{Fe_2B}\right)}} = -D_{Fe_2B} \left(\frac{C_{low}^{Fe_2B} - C_{int}^{Fe_2B}}{v - u}\right)
$$
\n(10)

Considering the equality of slopes in the $Fe₂B$ region of Figure 1, Equation (11) can be deduced from the geometrical considerations as follows:

$$
\frac{C_{low}^{Fe_2B} - C_{up}^{Fe_2B}}{v} = \frac{C_{in}^{Fe_2B} - C_{up}^{Fe_2B}}{u} = \frac{C_{low}^{Fe_2B} - C_{in}^{Fe_2B}}{v - u}
$$
(11)

Substituting the right hand-side (LHS) of Equation (11) into Equation (10), we can easily derive Equation (12) in the following form:

$$
\left(\frac{C_{low}^{Fe_2B} + C_{in}^{Fe_2B} - 2C_0}{2}\right) \frac{\varepsilon_{Fe_2B}}{\sqrt{(t - t_0^{Fe_2B})}} = -\sqrt{D_{Fe_2B}} \left(\frac{C_{low}^{Fe_2B} - C_{up}^{Fe_2B}}{v}\right)
$$
\n(12)

By replacing the Equation (2) into Equation (12), we deduce the dimensionless constant ε_{Fe_2B} as follows:

$$
\varepsilon_{Fe_2B}^2 = \frac{(C_{up}^{Fe_2B} - C_{low}^{Fe_2B})}{(C_{low}^{Fe_2B} + C_{int}^{Fe_2B} - 2C_0)}
$$
(13)

In the same way, the mass balance equation relative to the growth of FeB layer can be found by considering the entering mass flux from the surface $\frac{1}{2}$ considering the entering mass flux from the surface expressed by: \vec{J}_{ref} $\left[x(t)\right]_{x=u}$ $\vec{i} = -D_{\text{reg}}\left\{dC_{\text{ref}}\left[x(t)\right]/dx\right\}_{x=u}$ and the exiting mass flux towards the $Fe₂B$ region given by: J_{FeB} $[x(t+dt)]_{x=u+dt}$, $\tilde{i} = -D_{Fe_2B}$ $\left\{ dC_{Fe_2B}$ $[x(t+dt)]/dx \right\}_{x=u+dt}$, \tilde{i}

Finally we arrive at the expression of Equation (14) given by:

$$
\left(\frac{C_{up}^{FeB} + C_{low}^{FeB} - 2C_{int}^{Fe,B}}{2}\right) \left(\frac{dx}{dt}\right)_{x=u} \vec{i} = -D_{FeB} \frac{dC_{FeB}(x)}{dx} \begin{vmatrix} \vec{i} - \mu_{ceB}(x) & \mu_{ceB}(x) \\ -D_{Fe,B} \frac{dC_{Fe,B}(x)}{dx} \end{vmatrix}
$$
\n
$$
(14)
$$

Moreover, the boron concentration within the FeB layer under steady-state diffusion is expressed by Equation (15), accounting for the initial and boundary conditions provided by Equations (4) and (5).

$$
C_{FeB}(x) = \frac{C_{low}^{FeB} - C_{up}^{FeB}}{u} x + C_{up}^{FeB} \tag{15}
$$

By substituting the time derivative of Equation (1) and the spatial derivatives of Equations (8) and (15) at $x = u$ into Equation (14), we obtain Equation (16):

$$
\left(\frac{C_{up}^{FeB} - 2C_{int}^{FeB} + C_{low}^{FeB}}{2}\right) \left(2\varepsilon_{FeB} \sqrt{D_{FeB}}\right) \vec{i} = -D_{FeB} \left(\frac{C_{low}^{FeB} - C_{up}^{FeB}}{\varepsilon_{FeB} \sqrt{D_{FeB}}}\right) \vec{i} + D_{Fe_{2}B} \left(\frac{C_{int}^{FeB} - C_{up}^{FeB}}{\varepsilon_{FeB} \sqrt{D_{FeB}}}\right) \vec{i}
$$
\n(16)

For the convenience, two slopes from Equations (1) and (2) are defined as follows:

$$
\kappa_1^2 = 4\varepsilon_{Fe_2B}^2 D_{Fe_2B} \tag{17}
$$

$$
\kappa_2^2 = 4\varepsilon_{\text{FeB}}^2 D_{\text{FeB}} \tag{18}
$$

Incorporating the expressions of the two slopes κ_1^2 and κ_2^2 into Equation (16) and rearranging all terms, Equation (19) is obtained, which provides the expression of $\varepsilon_{Fe,B}^2$:

$$
\varepsilon_{FeB}^{2} = \frac{\varepsilon_{Fe,B}^{2} \left(C_{up}^{FeB} - C_{low}^{FeB} \right) \kappa_{2}^{2}}{\varepsilon_{Fe,B}^{2} \left(C_{up}^{FeB} - 2 C_{low}^{FeB} + C_{low}^{FeB} \right) \kappa_{2}^{2} - \kappa_{1}^{2} \left(C_{in}^{Fe,B} - C_{up}^{Fe,B} \right)}
$$
(19)

4. Results and discussions

4.1. SEM observations of cross-sectional views of boronized layers and EDS analyses

Figure 2 displays the cross-sections of boronized layers on the AISI H13 steel obtained at different conditions. The SEM images confirm the formation of a characteristic morphology of phase interfaces marked by a low degree of columnarity ascribed to the effect of alloying elements present in the substrate as shown in a similar study [22]. In fact, for alloyed steels [23, 24], the interfaces are flattened due to the high contents of Cr and Ni reducing the flux of active boron and filling up the space in between the boride needles. Contrary, the interfaces obtained on the borided Armco iron [25] are markedly tooth shaped with needles varying in wi[dth](#page-11-12) and length due to the absenc[e o](#page-11-13)[f all](#page-11-14)oying elements. In a very recent study [26], adding copper with a content of 30 wt.% in the powders mixture, has an adverse effect by suppressing the columnarity of boride needles for Armco iron and producing thicker lay[ers.](#page-11-15) The thicknesses of layers are affected by varying the time durations from 2 to 8 h at 1273 K between 31.16 ± 8.04 and 80.05 ± 19.9 µm [due](#page-11-16) to the thermal activation of boron diffusion phenomenon.

It is well established that the boronizing process applied to unalloyed or low-alloyed iron-based materials forms a boride layer, which may encompass the Fe₂B or (Fe₂B + FeB). The Fe-B phase diagram shows that the Fe₂B and FeB phases consist of approximately 8.83 wt.% and 16.23 wt.% B, respectively [9]. Figure 3 displays the characteristic peaks from the EDS analyses taken from 2 zones (In close proximity to the upper surface and around the interface area). These analyses were performed along the cross-section of borided AISI H13 steel at 1273 K for 8 h. The qualitative peak of boron with low intensity isvisible in Figures 3a and 3b, demonstrating a chemical reaction occurring between iron and boron to give rise to iron borides (FeB and $Fe₂B$) as continuous layers. The presence of alloying elements such as chromium, nickel and manganese can react chemically with the remaining boron to form precipitates of metal borides inside the boronized layer. Along the cross-section of a boronized sample at 1223 K for 10 h, the amount of element B in the boride layers was determined to be about 14.94 wt.% for the FeB phase and 7.28 wt.% for the Fe₂B phase. If these values are compared with the theoretical weight percentages of element B in the FeB and Fe₂B phases, it is clear that they are relatively close. It should be noted that the EDS method may not accurately detect elements with low atomic numbers, particularly those below eight. As a result, it was concluded that the bilayer ($FeB+Fe,B$) was formed on the surface of AISI H13 steel by boronizing process. The results show that elements such as Si, C, and Mo are not soluble, whereas elements like Cr, Mn, V, and Ni are soluble in the boride layer. By observing the change in the amount of element B from the surface to the matrix, it is evident that the amount of element B decreases towards the matrix. It is worth noting that a

Figure 2. SEM examinations of the cross-sections of boronized layers on AISI H13 steel at 1273 K for increasing time durations: a) 1273 K for 2 h, b) 1273 K for 4 h, c) 1273 K for 6 h and d) 1273 K for 8 h

major drawback of EDS analysis is its reduced accuracy in quantifying elements with low atomic numbers, such as those from Beryllium to Fluorine. Another limitation of EDS analysis is the overlap of X-ray energy peaks between elements, which can cause interference and make it more difficult to distinguish between them. Additionally, matrix effects can be a limitation, as the surrounding material may influence the X-ray emission of the elements, potentially leading to inaccurate measurements. Therefore, the measurement results are often significantly overestimated and cannot be used for

accurate determination, such as the boron concentration in the borided layer.

Rodriguez–Castro et al. [27] quantitatively assessed the nickel and chromium levels in (Fe, M)B, $(Fe, M)₂B$, and diffusion zone, where M stands for Cr or Ni. According to their research, (Fe, M)B had an average of 13.5 wt.%Cr and 6.85 wt.% Ni, whereas $(Fe, M)₂B$ had an average of 12.58 wt.% Cr and 6.85 wt.% Ni. However, for the transie[nt z](#page-11-17)one, the contents of Ni and Cr are quite high compared to the respective contents in the dual boride layer. The EDS analysis was performed by Ozbek and Bindal [28] on the

Figure 3. EDS analyses performed in three regions of the cross-sections of boride layer produced at 1273 K for 8 h, a) In close proximity to the upper surface, b) around the interface area, c) in the untreated zone

cross-sectional views of AISI M2 steel that had been borided at 850 °C for 4 h. They stated that silicon and carbon were ejected toward the substrate and did not dissolve in the boronized layer.

4.2. XRD analysis

The XRD technique is substantial to identify the crystalline nature of different phases as the iron borides (FeB and $Fe₂B$) constituting the compact compound layer as well as the probable metal borides in relation to the contents of boride forming-elements present in the chemical composition of treated AISI H13 steel. Figure 4 provides the XRD patterns of the treated surface of boronized AISI H13 steel at 1273 K for 8 h. The diffraction peaks of iron borides are clearly seen in the XRD patterns confirming the dual

Figure 4. X-ray diffraction (XRD) diffractogram on the surface of boronized AISI H13 steel at 1273 K during 8 h

nature of obtained boronized layer (FeB and Fe₂B). The presence of chromium (CrB and Cr, B) was also corroborated because of high content of chromium in the chemical composition of AISI H13 steel. Moreover, the XRD analysis supported the dual nature of boronized layers as indicated by the SEM results. In comparing our findings with those in the literature, for instance, Gunen et al. [29] reported the presence of CrB and MoB phases in the pack-borided AIS H13 steels. Unlike this study, the $Cr₂B$ phase was not detected due to the probable use of another powder mixture composed of 95 wt% B_4C and 5 wt.% NaBF₄. In another investigation, Zheng et al. [30] found the following phases Fe₂B, Fe[B, C](#page-12-0)rB and Cr₂B by XRD analysis when utilizing the powders mixture containing the CeO₂ oxide and such finding are similar to this study despite the use of different powders mixture.

4.3. Vickers microhardness measurements

Microhardness Vickers tests across the crosssections of boride layers are required to verify the effectiveness of this boronizing treatment. The process of hardening the surface layers of steel is crucial for enduring all types of wear in mechanical parts operating under extreme working conditions. Consequently, the hardness property is associated with the nature and formation energy of chemical bonds within compounds, such as iron borides (FeB and $Fe₂B$), or complex borides like (Fe, M)B and (Fe, M)₂B, where M represents the alloying element partially soluble in the lattices of iron borides. Figure 5 gives the SEM micrograph of cross-sections of AISI H13 steel after boronizing at 1273 K for 8 h, illustrating Vickers indentation marks alongside the distribution of microhardness values versus the diffusion depth. The imprints that remained on the cross-sections of the boronized AISI H13 steel at 1273 K for 8 h after applying the Vickers indenter are shown in Figure 5a. The variation in the lengths of diagonals on the generated imprints highlights the hardness level reached in each zone (FeB layer, Fe₂B) layer and the steel matrix). Figure 5b gives the measured microhardness profiles along the crosssection of boronized layer formed on the AISI H13 steel at 1273 K for 8 h. This profile changes in alignment with the boron concentration gradient and steadily diminishes over the diffusion distance. About 10 µm away from the surface, the microhardness value was about 1998 HV_{0.05} and drops to 255 HV_{0.05} when reaching the unaffected steel matrix after the boronizing treatment.

Taktak [18] developed the Vickers microhardnessdepth profiles on the pack-borided AISI 304 steels by taking into account various processing parameters and comparing our results with the literature. He found out that the surface Vickers microhardness averaged 2150 HV_{0.1}. The existence of metal borides as precipitate[s w](#page-11-18)ithin the dual-phase boronized layers resulted in a high value of surface microhardness. It is noted that the Vickers microhardness values measured in this work are consistent with those published in the reference works [18, 27].

4.4. Results from the linear model

The linear kinetic model with new expressions of the two mass balance equations was used to derive the characteristic [valu](#page-11-18)[es](#page-11-17) of the boron diffusion coefficients in both phases (FeB and Fe₂B) by first graphing the time dependencies of the layer thicknesses in the temperature range from 1123 to 1273 K. The results are shown in Figure 6. It shows the parabolic trend of the changes in layer thicknesses for FeB and $(FeB + Fe,B)$ with the selected temperature domain with the occurrence of incubation

Figure 5. SEM examination of cross-sectional view of treated AISI H13 steel at 1273 K for 8 h with indentation marks and measurements of microhardness: a) Image of Vickers indentation marks, (b): Measured microhardness-depth profile

Table 1. Results of fitting with Equations (1) and (2) with regard to the experimental parabolic growth constants and time incubations

Figure 6. Parabolic trends of experimental layers with increasing temperatures: a) FeB layer, b) the bilayer (FeB+ Fe₂B)

times independent of temperature. Table 1 lists the experimental parabolic growth constants fitted by Equations (1) and (2) together with the two corresponding incubation times.

For obtaining the values of diffusion coefficients, it is substantial to search for the two dimensionless parameters ε_{FeB} and ε_{Fe2} by utilizing Equations (19) and (13) for a value of internal boron concentration in Fe₂B estimated as $C_{int}^{Fe_2B} = 9.89$ wt.% B from the equivalence of slopes provided by Equation (11) . The calculations yield the two respective values of dimensionless constants ε_{FeB} and ε_{Fe2B} equal to 0.0638 and 0.0979. Using the data of Table 1, the boron $C_{\text{int}}^{\text{Fe}_2B}$

Table 2. Calculated boron diffusion coefficients with the linear model

T(K)	D_{FeB} $(m^2 \cdot s^{-1} \times 10^{-12})$	D_{Fe2B} $(m^2 \cdot s^{-1} \times 10^{-12})$
1123	0.32	0.35
1173	0.97	1.02
1223	2.65	2.7
1273	6.72	6.65

diffusion coefficients in each iron boride can be calculated and the calculation results are displayed in Table 2.

The obtained results from Table 2 were fitted with the Arrhenius relationships. Therefore, the expressions of boron diffusion coefficients in FeB and $Fe₂B$ were found and given by Equations (20) and (21):

$$
D_{FeB} = 4.90 \times 10^{-2} \exp(-\frac{240.37 kJ \times mol^{-1}}{RT})
$$
 (20)

$$
D_{Fe_2B} = 2.33 \times 10^{-2} \exp(-\frac{232.62 kJ \times mol^{-1}}{RT})
$$
 (21)

where R represents the universal gas constant $(8.314$ J mol⁻¹ K⁻¹), and T is the processing temperature in Kelvin.

Table 3 lists some reported results about the boron activation energies obtained on some boronized steel s from the literature [8, 31-39]. It is clearly seen that the published data from different researchers exhibit some intrinsic differences regarding the boriding

Steel	Boronizing process	Temperature Range (K)	Activation energy $(kJ \times mol^{-1})$	Calculation Method	Refs.
AISI 440C	Plasma-paste	973-1073 K	$(FeB + Fe,B)$ 134.62	Parabolic growth law	$\lceil 31 \rceil$
AISI 316L	Powder with microwave heating	1073-1223	$(FeB + Fe,B)$ 244.15	Parabolic growth law	$[32]$
AISI 8620	PDCPB	1123-1223	(FeB) 159, (Fe,B) 155	Bilayer model	[8]
DIN St 28	Pack boriding with and without mechanical activation (MA)	1023-1123	(Fe ₂ B) 113.55 and 106.74-108.81 With MA	Empirical relationship	$[33]$
AISI T1	CRTD	1123-1323	(FeB+Fe ₂ B) 179.05	Empirical relationship	$[34]$
Mild	SPS pack-boriding	1073-1273	$(FeB + Fe2B)$ 145.84	Empirical relationship	$[35]$
Sleipner	Powder	1173-1323	(FeB) 193.53 (Fe,B) 179.70	Bilayer model	$[36]$
AISI 1045	Powder	1123-1273	(Fe,B) 180	Monolayer model	$[37]$
AISI H ₁₃	Powder	1123-1273	(FeB+Fe,B) 143.16-160.70 with a variable content of CeO ₂	Parabolic growth law	$[38]$
AISI 304	Powder	1123-1323	$(FeB+Fe,B)$ 244	Parabolic growth law	$[39]$
AISI H ₁₃	Powder	1123-1273	(FeB) 240.37 (Fe, B) 232.62	Modified bilayer model	This work

Table 3. Boron activation energies reported on some steels

conditions used and the boriding method. They are mainly influenced by some technological aspects concerning the activation of reactive medium for the boron diffusion. The reported values of activation energies are fundamentally depend upon the calculation method, the chemical composition of the material (steel), the processing parameters (the time duration and the temperature) and so on. To highlight this experimental observations, Keddam et al. [31] managed to surface-harden the AISI 440 C steel with the plasma paste boriding process using a paste containing borax in the range of 700 to 800 °C. It is noted that the calculated activation energy for AISI 440 C steel was 134.62 kJ mol⁻¹, which stands as the lowest value among all the data listed in Table 3. [It is](#page-12-1) attributed to the utilization of an overactivated medium in conjunction with plasma assistance that enables the realization of this process at lower temperature (700 °C). In a separate study, Ayvaz and Aydin [32] investigated how the growth of layers during the boriding process of 316 L steel is affected by microwave heating. The results obtained from the unconventional heating method enabled a twofold increase in boron diffusion. Campos-Silva et al. [8] applied the PDCPB process to AISI 8620 steel using two va[lues](#page-12-2) of polarity inversion half-cycles of 30 s and 50 s, under a current density of 177 mA cm^{-2} . They evaluated the boron activation energies in FeB and Fe₂B as close to 159 and 155 kJ mol⁻¹, respectively and independently of the value [of](#page-11-4) polarity inversion half-cycles of 30 s and 50 s. It was concluded that this parameters had no effect [on t](#page-12-8)he layers' growth kinetics. Albayrak and Vin [\[3](#page-12-9)3] employed the pack-boriding on DIN St 28 steel with and without mechanical activation as a prior pretreatment. The $Fe₂B$ layers were obtained in this case without providing the chemical composition of used powders mixture. It was reported that the meachanical activation had no strong effect on calculated b[oron](#page-12-3) activation energies by approximatively 6%. Kartal et al. [34] treated the AISI T1 steel using the CRTD process in the range of 1123 to 1323 K. The calculated boron activation energy was estimated as 179.05 kJ mol⁻¹ with the empirical approach. Such a value of activation energy was lower compared with the values obtained during the present work for AISI H13 steel. It i[s at](#page-12-4)tributed to the enhanced mobility of boron within this activated medium and the assistance of electrochemical reactions arising from this CRTD process. In another study, Yu et al. [35] boronized the mild steel employing the spark plasma sintering (SPS) technique. In fact, Introducing SPS to the boriding process has several advantages: including the increase of diffusion rate of boron due to the presence of spark plasma along with the activation of electrical field. The SPS boriding was conducte[d at](#page-12-5) temperatures ranging from 700 to 1000 °C for 0.5 h. The estimated boron activation energy was found to be equal to 145.84 kJ mol⁻¹, highlighting the notable effect of SPS on the kinetics of boriding process. Thus, the findings

[35] indicated that SPS significantly reduced the boron activation energy compared with the conventional powder pack-boriding process [37]. In another investigation, Orihel et al. [36] assessed the boron activation energy in FeB and Fe₂B for Sleipner steel possessing comparable values with the present [stud](#page-12-5)y for the AISI H13 steel. Mei et al. [38] performed pack-boronizing on AISI H13 steel using a powder mixture containing rare earth oxides $(CeO₂)$ with varying contents from 2 to 6 wt.%. [Th](#page-12-6)e aim was to investigate the impact of adding this oxide to the boriding agent on the boronizing kinetics of AISI H13 steel. The results indicated that the a[ddit](#page-12-8)ion of rare earth oxide in the powder mixture led to a reduction in boron activation energy and an acceleration of the diffusion rate of boron atoms compared to conventional powder pack-boriding of the same steel, as demonstrated in the present study. Through this study, the obtained values of activation energies in FeB and Fe₂B for AISI H13 steel were attributed to the high proportion of alloying elements, namely Cr and V, inside the substrate. This experimental fact reduces the diffusion rate of boron at deeper distances. The present approach has two limitations during the diffusion process of elemental boron through the surface. In fact, the carbon element present in AISI

Figure 7. Iso-thickness diagrams for the borided AISI H13 steel: (a) FeB and (b) FeB + Fe,B

Figure 8. SEM examination of cross-sectional views of boronized layers obtained at 1323 K for two time durations: a) 4.5 h, b) 8.5 h

H13 steel, by forming complex carbides, can interfere with the boron element through a competitive effect, rendering its diffusion more difficult. The precipitation of metal borides as precipitates depletes a certain content of boron, thereby inducing a reduction in the layers' thicknesses. Despite these two limitations, this applied approach is still capable of successfully predicting the boriding kinetics of AISI H13 steel.

It is possible to determine the need for a straightforward tool to optimize the thicknesses of layers produced during the boronizing process by using the simulation results from the linear model. As a result, common graphs known as contour diagrams can be created (see Figure 7), which express the relationship between the processing parameters (temperature and time duration) and layer thickness. These contour diagrams are intended to assist in selecting the appropriate layer thicknesses to correspond with AISI H13 steel that has been borided for industrial usage.

To ascertain the validity of the linear model, two additional processing parameters were considered for this purpose. Figure 8 shows the SEM cross-sectional views of boride layers obtained at 1323 K for 4.5 and 8.5 h. In Table 4, the experimental layers' thicknesses were compared with the predicted values and a good agreement was achieved between the two sets of data. It is concluded that the model reproduces satisfactory the experimental results in terms of layers' thicknesses.

4. The activation energies of boron in both phases 240.37 kJ mol⁻¹ for FeB and 232.62 kJ mol⁻¹ for Fe₂B were derived using the linear model. The obtained values of the activation energies were in agreement with the results found in the literature.

5. Two additional processing parameters (1323 K for 4.5 and 8.5 h) were empirically used to validate the current model and the predicted layer thicknesses were in agreement with the experiments.

6. The contour diagrams served as a valuable tool for selecting the most appropriate coating thicknesses that corresponded to real applications of AISI H13 steel.

7. The current approach can be used to predict the kinetics of interstitial elements (such as B, N and C) through the surfaces of metallic alloys.

Acknowledgement

Research funding: The work described in this paper was supported by a grant of PRODEP and CONAHCyT México (National Council of Humanities, Science and Technology).

Author Contributions

Visualization, Software and Methodology original draft, M. Ortiz-Domínguez, Data curation, Formal analysis, Investigation, Á. J. Morales-Robles ; Writing – review & editing, M. Keddam.

Table 4. Comparing the simulated layers' thicknesses with the experimental values from the linear diffusion model for two processing parameters

Processing parameters	$u_{\rm exp}$ (μ m)	u_{sim} (µm) using the linear model	$V_{exp}(\mu m)$	(m) using the linear model
1323 K for $4.5 h$	53.73 ± 13.5	56.34	89.16 ± 20.3	86.5
1323 K for 8.5 h	85.26 ± 19.1	83.01	124.73 ± 24.7	126.08

5. Conclusions

The AISI H13 steel was boronized between 1123 and 1273 K for 2-8 h using the powder method. The results are summarized in the following points

1. The resulting boronized layers on the AISI H13 steel ranged in thickness from 7.18 \pm 2.3 to 80.0 \pm 19.9 µm and displayed a slightly serrated shape.

2. The following phases FeB, Fe₂B, CrB and Cr₂B were detected by XRD analysis for all processing parameters.

3. The value of Vickers microhardness measured at 1273 K for 8 h was 1998 HV $_{0.05}$ at a depth of about 10 µm below the material surface; in the steel substrate, it reached 255 HV $_{0.05}$.

Data Availability Statement

Data will be made available on request.

Conflicts of Interest

The authors declare no conflict of interest.

References

- [1] F.E. Mariani, G.S. Takeya, L.C. Casteletti, A.N. Lombardi, G.E. Totten, Kinetics of layers produced on niobium by salt bath boriding, Materials Performance and Characterization, 6 (2017) 467-74. https://doi.org/10.1520/MPC20160095
- [2] M. Yucel Gencer, A. Calik, The pack-boronizing of

pure vanadium under a controlled atmosphere, Applied Surface Science, 256 (2010) 7612-7618. https://doi.org/10.1016/j.apsusc.2010.06.013

- [3] R. Ribeiro, S. Ingole, M. Usta, C. Bindal, A.H. Ucisik, H. Liang, Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions, Wear, 262 (2007) 1380-1386. https://doi.org/10.1016/j.wear.2007.01.009
- [4] A. Kaouka, K. Benarous, Electrochemical boriding of titanium alloy Ti-6Al-4V, Journal of Materials Research and Technology, 8 (2019) 6407-6412. https://doi.org/10.1016/j.jmrt.2019.10.024
- [5] C.A. Cuao-Moreu, I. Campos-Silva, A.M. Delgado-Brito, E.O. Garcia-Sanchez, A. Juarez-Hernandez, J.M. Diabb-Zavala, M.A.L. Hernandez-Rodriguez, Effect of laser surface texturing and boriding on the tribocorrosion resistance of an ASTM F-1537 cobalt alloy, Wear, 523 (2023) 204799. https://doi.org/10.1016/j.wear.2023.204799
- [6] N. Makuch, M. Kulka, M. Keddam, A. Piasecki, Growth kinetics, microstructure evolution, and some mechanical properties of boride layers produced on X165CrV12 tool steel, Materials, 16 (2022) 26. https://doi.org/10.3390/ma16010026
- [7] P. Yang, X.C. Wu, Y.A. Min, T.R. Wu, J.Z. Gui, Plasma boriding of high strength alloy steel with nanostructured surface layer at low temperature assisted by air blast shot peening, Surface and Coatings Technology, 228 (2013) 229-233. https://doi.org/10.1016/j.surfcoat.2013.04.033
- [8] M. Olivares-Luna, J.L. Rosales-Lopez, L.E. Castillo-Vela, K.D. Chaparro Pérez, A.M. Delgado-Brito, I. Mejía-Caballero, I. Campos-Silva, Insights on the pulsed-DC powder-pack boriding process: The role of the electric charge on the growth of the boride layer and the semiconductor behavior of the boriding media, Surface and Coatings Technology, 480 (2024) 130588. https://doi.org/10.1016/j.surfcoat.2024.130588
- [9] M. Ortiz-Domínguez, Á.J. Morales-Robles, O.A. Gómez-Vargas, T.J. Cruz-Victoria, Analysis of diffusion coefficients of iron monoboride and diiron boride coating formed on the surface of AISI 420 steel by two different models: experiments and modelling, Materials, 16 (2023) 4801. https://doi.org/10.3390/ma16134801
- [10] M. Keddam, J. Peter, Simulating the growth of dualphase boride layer on AISI M2 steel by two kinetic approaches, Coatings, 11 (2021) 433. https://doi.org/10.3390/coatings11040433
- [11] A. Milinović, J. Stojšić, I. Kladarić, B. Matijević, Evaluation of boride layers on C70W2 steel using a new approach to characterization of boride layers, Materials, 15 (2022) 3891. https://doi.org/10.3390/ma15113891
- [12] R.D. Ramdan, T. Takaki, Y. Tomita, Free energy problem for the simulations of the growth of $Fe₂B$ phase using phase-field method, Materials Transactions, 49 (2008) 2625-2631. https://doi.org/10.2320/matertrans.MRA2008158
- [13] A.T. Debicha, K. Rayane, O. Allaoui, Modelling phases formed during boriding for estimation of the depth of Boron through the growing in substrate by the lattice Boltzmann method, Defect and Diffusion Forum, 369 (2016) 1662-9507.

https://doi.org/10.4028/www.scientific.net/DDF.369.1 77

- [14] J.C. Velázquez-Altamirano, I.P. Torres-Avila, G. Teran-Méndez, S.I. Capula-Colindres, R. Cabrera-Sierra, R. Carrera-Espinoza, E. Hernández-Sánchez, A stochastic model and investigation into the probability distribution of the thickness of boride layers formed on low-carbon steel, Coatings, 9 (2019) 756. https://doi.org/10.3390/coatings9110756
- [15] M. Bendaoud, M. Keddam, A fuzzy neural network approach for modeling the growth kinetics of FeB and Fe₂B layers during the boronizing process, Matériaux & Techniques, 106 (2018) 603. https://doi.org/10.1051/mattech/2019002
- [16] I. Campos, M. Islas, E. González, P. Ponce, G. Ramírez, Use of fuzzy logic for modeling the growth of Fe2 B boride layers during boronizing, Surface and Coatings Technology, 201 (2006) 2717-2723. https://doi.org/10.1016/j.surfcoat.2006.05.016
- [17] N. Vidakis, A. Antoniadis, N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds, Journal of Materials Processing Technology, 143-144 (2003), 481-485. https://doi.org/10.1016/S0924-0136(03)00300-5
- [18] S. Taktak, Some mechanical properties of borided AISI H13 and 304 steels, Materials Design, 28 (2007) 1836- 1843. https://doi.org/10.1016/j.matdes.2006.04.017
- [19] M. Ortiz-Domínguez, O.A. Gómez-Vargas, M. Keddam, A. Arenas-Flores, J. García-Serrano, Kinetics of boron diffusion and characterization of Fe2 B layers on AISI 9840 steel, Protection of Metals and Physical Chemistry of Surfaces, 53 (2017) 534-547. https://doi.org/10.1134/S2070205117030169
- [20] L.G. Yu, X.J. Chen, K.A. Khor, G. Sundararajan, FeB/Fe₂B phase transformation during SPS packboriding: Boride layer growth kinetics, Acta Materialia, 53 (2005) 2361-2368. https://doi.org/10.1016/j.actamat.2005.01.043
- [21] H. Okamoto, B-Fe (boron-iron), Journal of Phase Equilibria and Diffusion, 25 (2004) 297-298. https://doi.org/10.1007/s11669-004-0128-3
- [22] R.C. Morón, I. Hernández-Onofre, A.D. Contla-Pacheco, D. Bravo-Bárcenas, I. Campos-Silva, Friction and reciprocating wear behavior of borided AISI H13 steel under dry and lubricated conditions, Journal of Materials Engineering and Performance, 29 (2020) 4529-4540. https://doi.org/10.1007/s11665-020-04957-w
- [23] P. Goeuriot, R. Fillit, F. Thevenot, J.H. Driver, H. Bruyas, The influence of alloying element additions on the boriding of steels, Materials Science and Engineering, 55 (1982) 9-19. https://doi.org/10.1016/0025-5416(82)90078-7
- [24] D.N. Tsipas, J. Rus, Boronizing of alloy steels, Journal of Materials Science Letters, 6 (1987) 118-120. https://doi.org/10.1007/BF01729451
- [25] O. Ozdemir, M. Usta, C. Bindal, A. H. Ucisik, Hard iron boride (Fe₂B) on 99.97wt% pure iron, Vacuum, 80 (2006) 1391-1395 https://doi.org/10.1016/j.vacuum.2006.01.022
- [26] S.A. Lysykh, U.L. Mishigdorzhiyn, V.N. Kornopol^{*}tsev, X.Z. He, Yu. P. Kharaev, Structure of diffusion layers on pure iron at powder diffusion layers on pure iron at powder borocoppering, Technical Physics, 69 (2024) 14-16. https://doi.org/10.1134/S1063784224700233
- [27] G.A. Rodríguez-Castro, L.F. Jiménez-Tinoco, J.V. Méndez-Méndez, I. Arzate-Vázquez, A. Meneses-Amador, H. Martínez-Gutiérrez, I. Campos-Silva,

Damage mechanisms in AISI 304 borided steel: scratch and Daimler-Benz adhesion tests, Materials Research, 18 (2015) 1346-1353. https://doi.org/10.1590/1516-1439.025515

[28] I. Ozbek, C. Bindal, Kinetics of borided AISI M2 high speed steel, Vacuum, 86 (2011) 391-397.

https://doi.org/10.1016/j.vacuum.2011.08.004

- [29] A. Günen, İ.H. Karahan, M.S. Karakaş, B. Kurt, Y. Kanca, V.V. Çay, M. Yıldız, Properties and corrosion resistance of AISI H13 hot-work tool steel with borided B4 C powders, Metals And Materials International, 26 (2020) 1329-1340. https://doi.org/10.1007/s12540-019-00421-0
- [30] Q. Zheng, S. Mei, Z. Xiao, Z. Hu, Z. Chen, Q. Xu, A. Guryev, B. Lygdenov, Tribological, oxidation and corrosion properties of ceramic coating on AISI H13 steel by rare earth-Cr composite boronizing, Ceramics International, 50 (2024) 8760-8776. https://doi.org/10.1016/j.ceramint.2023.12.193
- [31] M. Keddam, R. Chegroune, M. Kulka, D. Panfil, S. Ulker, S. Taktak, Characterization and diffusion kinetics of the plasma paste borided AISI 440C steel, Transactions of the Indian Institute of Metals, 70(2017) 1377-1385.

https://doi.org/10.1007/s12666-016-0934-4

- [32] S.I. Ayvaz, I. Aydin, Effect of the microwave heating on diffusion kinetics and mechanical properties of borides in AISI 316L, Transactions of the Indian Institute of Metals, 73 (2020) 2635-2644. https://doi.org/10.1007/s12666-020-02072-x
- [33] M.G. Albayrak, E. Evin, A Different Approach: Effect of mechanical alloying on pack boronizing, Journal of Materials Engineering and Performance, 33 (2023) 9039-9046.

https://doi.org/10.1007/s11665-023-09004-y

- [34] G.K. Sireli, H. Yuce, M. Arslan, M. Karimzadehkhoei, S. Timur, Improving the surface performance of discarded AISI T1 steel by cathodic reduction and thermal diffusion-based boriding, Journal of Materials Engineering and Performance, 32 (2023) 9504-9514. https://doi.org/10.1007/s11665-023-07817-5
- [35] L.G Yu, K.A Khor, G Sundararajan, Boriding of mild steel using the spark plasma sintering (SPS) technique, Surface and Coatings Technology, 157 (2002) 226-230. https://doi.org/10.1016/S0257-8972(02)00134-2
- [36] P. Orihel, J. Ptačinová, P. Gogola, M. Keddam, P. Jurči, Pack-boriding of Sleipner steel: microstructure analysis and kinetics modeling, Materials Testing, 66 (2024) 43- 55. https://doi.org/10.1515/mt-2023-0331
- [37] J. Zuno-Silva, M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa, O. Damián-Mejía, E. Cardoso-Legorreta, M. Abreu-Quijano, Boriding kinetics of Fe₂B layers formed on AISI 1045 steel, Journal of Mining and Metallurgy, Section B: Metallurgy, 50 (2014) 101-107. https://doi.org/10.2298/JMMB140323019Z
- [38] S. Mei, Y. Zhang, Q. Zheng, Y. Fan, B. Lygdenov, A. Guryev, Compound boronizing and its kinetics analysis for H13 steel with rare earth CeO₂ and Cr₂O₃, Applied Sciences, 12 (2022) 3636. https://doi.org/10.3390/app12073636
- [39] P. Topuz, B. Çiçek, O. Akar, Kinetic ınvestigation of AISI 304 stainless steel boronized in indirect heated fluidized bed furnace, Journal of Metallurgy, Section B: Metallurgy, 52 (2016) 63-68. https://doi.org/10.2298/JMMB150301007T

KARAKTERIZACIJA I MODELOVANJE DIFUZIJE BORA U AISI H13 ČELIKU

M. Ortiz-Domínguez a , M. Keddam b, *, Á.J. Morales-Robles c

^a Autonomni univerzitet države Hidalgo, Mašinsko inženjerstvo u Sahagunu, Hidalgo, Meksiko b
^b Laboratorija za tehnologiju materijala. Fakultet za mašinsko i procesno inženjerstvo, USTHR, Al

^b Laboratorija za tehnologiju materijala, Fakultet za mašinsko i procesno inženjerstvo, USTHB, Alžir

 Autonomni univerzitet države Hidalgo, Institut za osnovne nauke i inženjerstvo, Hidalgo, Meksiko *Apstrakt*

Razvijen je kinetički pristup koji uzima u obzir linearnost borovih profila kroz borirani sloj na AISI H13 čeliku. Cilj ovog pristupa je praćenje vremenske evolucije debljine slojeva FeB i (FeB + Fe2 B) razmatranjem novih izraza za jednačinu ravnoteže mase na svakom frontu rasta. Ovi površinski slojevi su generisani pak boriranjem AISI H13 čelika u temperaturnom opsegu od 1123 do 1273 K u trajanju od 2 do 8 sati. Konačno, ovaj linearni model je potvrđen za dva dodatna seta parametara obrade (1323 K za 4,5 i 8,5 sati). Takođe su predloženi izotermni dijagrami debljine radi optimizacije debljine slojeva za predviđenu industrijsku primenu.

Ključne reči: Boriranje; Boridi; Difuzioni model; Energija aktivacije; Dijagram kontura

