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Abstract 

Biocompatible titanium alloys possess a balanced set of improved mechanical properties and good biocompatibility, making 
them crucial materials in biomedical engineering. There is an increasing demand for these new alloys with superior 
properties. Furthermore, there is a need to understand the relationship between parameters and properties, and machine 
learning is being applied to make the whole process cheaper and more efficient. The aim of this study is to develop accurate 
machine learning models for predicting mechanical properties: modulus of elasticity, tensile strength, and yield strength, 
specifically using the Extra Trees Regressor model. Compared to the previous results, an improvement of the elastic 
modulus prediction model was observed after the inclusion of data on heat treatment parameters and Poisson’s ratio, as 
seen in the reduced MAE from 7.402 to 7.160 GPa. Models were built to predict the values of tensile strength and yield 
strength, where iron and tin were shown as most important features respectively, while the correlation coefficients for the 
test set were 0.893 and 0.868. 
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Introduction1.

Titanium alloys have been the most widely used 
metallic materials in the field of biomedical 
engineering, for decades [1, 2]. Owing to their 
excellent mechanical and physical properties such as 
high strength, corrosion and wear resistance, and low 
modulus of elasticity, as well as their exceptional 
biocompatiblity , titanium alloys have become 
essential materials for medical implant production [3-
7]. Titanium implants are used in orthopedics (joint 
replacement surgery on shoulders, knees and hips), 
and dentistry (tooth replacement) [3, 8]. Even though 
titanium and its alloy exhibit the highest 
biocompatibility among biomaterials, they are 
considered bioinert materials due to the osteogenesis 
trend. In general, titanium implants are manufactured 
by traditional metallurgical techniques such as 
powder metallurgy and casting. Lately, few studies 
are reporting on titanium implant production using 
additive  manufacturing [9, 10]. 

The presence of different alloying elements is 
crucial for their biomechanical compatibility. The 
alloying elements used in this study are classified as 

non-toxic or neutral to the human body and include: 
Nb, Zr, Ta, Sn, Fe, Mn, Si, Mo, O, N and H. Among 
them, Nb, Zr, Ta, Sn, Fe, Mn and Mo are β stabilizers, 
which, by lowering the β-transus temperature, favor 
the formation of the β phase (which is characterized 
by low elastic modulus values). In contrast, O, H and 
C are α stabilizers, predominantly present as 
impurities. The remaining elements are considered 
neutral within this classification. As the number of 
alloying elements increases, the interactions between 
the alloying elements become increasingly complex, 
requiring detailed investigations of the enormously 
large number of combined effects on mechanical 
properties [11, 12]. 

Increasing the Nb content in binary Ti-Nb alloys 
decreases the modulus of elasticity due to increased 
porosity while increasing the tensile strength and 
yield strength through the formation of titanium 
carbide [13]. Similarly, the Ti-30Ta alloy achieves an 
optimal modulus-to-strength ratio due to its acicular 
phase [14]. Zr increases strength in Ti-Zr binary 
dental alloys through solution strengthening, grain 
refinement, and FCC phase introduction [15]. Sn, 
especially in concentrations above 10 wt.%, leads to 
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the formation of the Ti3Sn intermetallic phase, 
increasing the elastic modulus [16]. The Ti-9Mn alloy 
is known for its low modulus and high yield strength, 
which is attributed to the reduction of the ω phase and 
solid solution strengthening [17]. Mo in alloys such as 
Ti-15Mo shows similar advantages [18]. Small 
intentional additions, such as in TNTZ alloys with O, 
Fe and Si, can maintain a modulus of about 75 GPa 
while increasing the yield stress above 1000 MPa 
[19]. 

According to the latest global biomaterials market 
analysis reported in 2023, the global biomaterials 
market size is estimated at USD 106.51 billion, and is 
projected to USD 619.27 billion by 2031, which 
implies that biomaterials possess significant 
commercial potential. The biomaterials market is 
divided by product material (natural materials, 
bimetallic, bioceramics, and biopolymers) or by 
product application (dentistry, orthopedics, 
cardiovascular, ophthalmology, tissue engineering, 
etc.). The highest market share belongs to 
biomaterials used for orthopedics, which is estimated 
to reach a compound annual growth rate (CAGR) of 
16.4% up to 2031. Implant fabrication is a challenging 
and expansive process for both, traditional metallurgy 
and additive manufacturing  [20]. 

It is well-known that many years of research and 
development of any material, especially a biomaterial, 
are necessary  to obtain a desirable material 
appropriate for biological applications. These days, 
many researchers employ machine learning methods 
for designing biomaterials  to improve their 
performances, shorten the time for material 
development, and decrease production costs [21-25]. 
In most studies, machine learning models are 
employed to predict hardness, corrosion resistance, 
modulus of elasticity, tensile, and yield strength of 
biocompatible materials. 

As the parameters-microstructure-properties 
relationship cannot be fully described by physical 
models, statistical models are often applied [26]. One 
of the groundbreaking studies on predicting the 
mechanical properties of titanium alloys using 
artificial neural networks was performed by S. 
Milanov. He used data on alloy composition, heat 
treatment parameters and operating temperatures to 
predict nine mechanical properties, including tensile 
strength and yield strength [27]. In addition, several 
studies have evaluated the influence of various 
parameters on the yield strength and tensile strength 
of the well-known Ti6Al4V alloy. For instance, S. Kar 
used microstructural parameters to predict the yield 
strength and tensile strength values, identifying that 
an increase in the thickness of the alpha lamellae 
decreases the strength, while the volume of this phase 

increases strength [28]. Junaidi Sjarif analyzed the 
values of tensile strength and yield strength using heat 
treatment parameters for Ti6Al4V alloys, concluding 
that water quenching and the degree of deformation 
enhance both tensile strength and yield strength [29]. 
P. S. Nuri Banu used the alloy composition and 
processing parameters to predict the mechanical 
properties of titanium alloys, finding that the model is 
highly sensitive to high concentrations of Ta and Nb. 
He determined the optimal combination for the Ti-
xNb-yTa ternary alloy, which provides the best 
combination of high tensile strength, yield strength, 
and low modulus of elasticity [30]. 

However, these results refer to widely used alloys 
with extensive data and results, but many of their 
constituent elements, such as V, Al, Ni, Co, Cu and Cr, 
are cytotoxic. This study addresses this shortcoming 
by focusing on the optimization of biocompatible 
titanium alloys, thus making a new contribution to the 
field. 

The main objective of this study is to build a 
credible machine learning model to predict the key 
mechanical properties of biocompatible titanium 
alloys: elastic modulus, tensile strength and yield 
strength. A comprehensive database of biocompatible 
titanium alloys was established. By introducing 
Poisson’s ratio and heat treatment parameters 
(temperature and time) into the model for predicting 
the modulus of elasticity, significant improvements 
were observed compared to previously published 
results. It is important to note that the study identified 
iron and tin as important features of tensile strength 
and yield strength, respectively. Also, the accuracy of 
both models for the test set was over 85%. 

 
Methods 2.

Database 2.1.
 
These data sets, obtained from the literature, 

include alloying mass fractions, along with 
experimental values for modulus of elasticity, tensile 
strength, yield strength, and hardness. Furthermore, 
the datasets include information on mechanical 
treatments, deformations, thermal treatments and 
corresponding temperatures and durations [23]. In 
addition to the parameters derived from the literature, 
the calculated parameters obtained with the help of 
imported dictionaries were also integrated, and the 
calculation scripts were published on the Zenoodo 
platform [31]. 

The Poisson’s ratio is calculated using two 
methods: summing Poisson’s ratios of individual 
elements and applying a formula based on the bulk 
and shear modulus. The theoretical modulus of 
elasticity is determined in three ways, using the “least 
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squares” coefficient optimization method, using the 
formula that relates the modulus of elasticity to the 
specific heat, and the formula that relates bulk and 
shear modulus. 

 
Data preparation 2.2.

 
Different models were developed to predict 

various biocompatible titanium alloys properties: 
modulus of elasticity, tensile strength, and yield 
strength. Correspondingly, the approach to data 
preprocessing varied. Before data processing, 
thorough preparation of the dataset was crucial. 
Columns containing product information, references, 
or similar data were initially excluded from the 
prediction model due to their unsuitability. 
Furthermore, the column detailing the specifics of 
heat treatment has been replaced with a simplified 
numerical representation to facilitate data processing 
in regression analysis.  

Afterward, rigorous checks were carried out to 
ensure the absence of non-numeric entries, followed 
by outlier detection. Our previous research has shown 
that the ratio of elastic modulus to specific heat serves 
as a key criterion for identifying outliers due to its 
strong correlation [24]. For this purpose, several 
techniques were used, including linear regression, Z-
score analysis, IQR method, local outlier detection, 
and combined outlier detection. 

After removing the outlier alloys, the integration 
of the calculated parameters and literature data 
resulted in a refined database consisting of 218 alloys 
characterized by 62 different parameters for tensile 
strength and yield strength and 58 parameters for 
modulus of elasticity. Subsequently, rows with 
missing data entries for elongation, ultimate tensile 
strength, and yield strength were excluded, leaving a 

total of 57 alloys for the analysis of tensile strength 
and yield strength as target variables (Figure 1). 

We utilized Lazy Predict and identified the Extra 
Trees Regressor as the optimal model for our analysis 
[32].  

The next stage involved the selection of key 
properties relevant to the target variables. This step 
aimed to identify the most influential features, thereby 
increasing the accuracy of the prediction.  For all 
analyses, 65 %  of the dataset was allocated for model 
training, while the remaining 35 % was designated for 
the test set. The model’s accuracy was evaluated using 
common metrics such as mean absolute error (MAE), 
mean squared error (MSE), maximum absolute error 
(MAX), mean absolute percentage error (MAPE), 
root mean square error (RMSE), and R-squared (R2) 
[32].  

 
Results and discussion  3.

Model for predicting modulus of elasticity 3.1.
 
Prior research examined the accuracy of 

predicting Young’s modulus with the Extra Trees 
Regression model, resulting in favorable findings 
[15]. Building upon this foundation, incorporating 
data on heat treatments, temperature and time 
variables, resulted in improvements that led to a 
reduction in mean absolute error (MAE) from the 
original 7.402 to 7.160 GPa, with improvement in the 
correlation coefficient from 0.724 to 0.793, for the test 
set  (Table 1). A decrease in MAE indicates a 
corresponding decrease in the difference between the 
predicted and actual values of the target parameter. 
The enhanced correlation coefficient indicates 
improved linearity in the relationship between 
predicted and actual values at the same time.  

 

G. Marković et al. / J. Min. Metall. Sect. B-Metall. 60 (2) (2024) 273 - 282 275

Figure 1. Refined database overview with filtered alloys and parameters



Figure 2 (a) shows the actual and predicted values 
of Young’s modulus of elasticity by the number of 
tested samples. The largest prediction errors are 
observed when the true value exceeds 120 GPa or is 
less than 40 GPa, as these extreme values do not 
conform to the typical pattern. Additionally, Figure 2 
(b) illustrates the deviation from the linear 
relationship between predicted and actual values. 

 Understanding important features is crucial for 
comprehending the factors contributing to the 
predictions, reducing their dimensionality, and 
emphasizing key parameters for the final prediction 
model.  

As can be seen from Figure 3, Nb is highlighted as 
the most influential feature in the elastic modulus 
prediction model. As previously mentioned, Nb 
belongs to β stabilizers.  A. Thoemmes investigated its 
influence using 13 binary titanium alloys in which the 
Nb content varied 10-45 wt.%. He observed that, after 
rapid cooling, for low Nb contents (less than 17.5 
wt.%), formation of α’ from the β phase is 
characteristic. Up to 30 wt.% isolates α’’, and 
somewhere between 30 and 35 wt.% only the β phase 
or a mixture of β and ω phases occurs. Another 
interesting observation is that the 37.5 and 45 wt% Nb 
samples showed the existence of two types of β phase 
(the main difference is in the size of the lattice 
parameters). Besides influencing microstructure 
formation, the Nb content also affects the 
orthorhombicity and c/a ratio of the α’’ phase, and the 

low value of 48 GPa in Ti-17.5Nb is attributed to the 
low c/a ratio and high orthorhombic  of the α’’ phase 
[33]. 

The elastic modulus prediction model identified 
the slip_tw_group parameter as the second most 
influential. This parameter defines the deformation 
mechanism present in the observed titanium alloy. 
When we talk about the deformation mechanism, we 
refer to the slip and twinning mechanisms and their 
effects on the properties of Ti alloys. Stable β titanium 
alloys correspond to the slip mechanism, while 
metastable β Ti alloys, which are the focus of our 
research and are defined by lower elastic modulus 
values, are on the border of the slip/twinning 
mechanism [34]. 

In our previous work, we found that specific heat 
significantly influences the modulus of elasticity, as 
demonstrated by their relationship formula [24, 35]: 

 
 (1) 

 
where      is specific heat at constant pressure per 

kilogram (J/(kg·K)); s is density (kg/m3);     is Young’s 
modulus (GPa);   is the linear coefficient of thermal 
expansion (1/K), and    is Poisson’s ratio. The 
presence of Poisson’s ratio in this formula prompted 
an examination of its influence on predicting the 
modulus of elasticity, revealing it to be an influential 
variable, as shown in Figure 2.  Poisson’s ratio is 
expressed by the equation [36]: 
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MAE R2 MSE MAX MAPE

Training set 0.523 0.988 5.052 12.526 0.0008

Test set 7.160 0.793 101.46 38.734 0.108

Table 1. Metrics for train and  test set for a model predicting Young’s modulus with heat treatment data incorporated

Figure 2. Comparison of predicted and actual Young’s modulus (a) by the number of tested samples and (b)  deviation 
from linearity
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where K represents bulk modulus (GPa) and G is 

shear modulus (GPa).  
Besides Poisson’s ratio, variables related to heat 

treatment time (HT1: t, min and HT2: t, min) and 
temperatures (HT1: T, °C and HT2: T, °C) were found 
to increase the model accuracy.  

 
Model for predicting tensile strength and 3.2.

yield strength 
 
Evaluation of the Extra Trees Regression model 

for predicting tensile and yield strength provided 
significant results. For tensile strength prediction, the 
model achieved a relatively high correlation 
coefficient of 0.89 on the test set, with an MAE of 
71.69 MPa (Table 2). Similarly, for yield strength 
prediction, the model showed a correlation coefficient 
of 0.87, with an MAE of 76.9 MPa (Table 3). These 

data are particularly significant as the average errors 
fall within the deviation range (around ±100 MPa) 
typically reported in the literature for experimental 
data. It should be noted here that in the database we 
used, the number of data that have information on 
tensile and yield strength was about 100. Achieving 
relatively good results with a small amount of data 
may be attributed to the elimination of data unsuitable 
for the model, a limitation that will be discussed later 
in this paper. Successful outcomes could also be 
credited to the reliable research results presented in 
these publications in our database. 

Figure 4 (a) and (b) illustrate the discrepancies 
between predicted and actual values of tensile 
strength and yield strength in relation to the amount of 
test specimens. It can be concluded that a similar 
deviation trend is evident in both cases, especially 
evident in the same values of the test samples. 

The influence of various variables on the target 
parameters, tensile strength and yield strength, was 
examined. Iron mass content, yield strength, and Mo 
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Figure 3. Feature importance for experimental values of Young’s modulus

MAE R2 MSE MAX MAPE

Training set 0.0 1.0 0.0 0.0 0.0

Test set 76.904 0.868 12.924.185 317.540  0.099

MAE R2 MSE MAX MAPE

Training set 0.0 1.0 0.0 0.0 0.0

Test set 71.692 0.893 9.697.006 274.670 0.086

Table 2. Metrics for train and  test set in a model predicting tensile strength

Table 3. Metrics for train and  test set in a model predicting yield strength



equivalent emerged as the three most influential 
variables affecting tensile strength (Figure 5). A direct 
correlation was observed between the tensile strength 
and the increase in the mass content of Fe in alloys of 
the Tix-Fex-1 type, which indicates a uniform increase 
in tensile strength with higher concentrations of Fe 
The enhancement in this mechanical property was 
primarily ascribed to the forceful hybridization 
between the Ti-3d and Fe-3d orbitals [37]. The 
relationship between tensile strength and yield 
strength has long been established, and some of the 
expressions that connect these two concepts refer to 
the Hollomon, Swift and Voce equations [38]. Mo 
equivalent is a parameter that indicates the stability of 
certain phases in titanium alloys, defined by the 
presence of various alloying elements. There is no 

direct relationship between Mo eq and tensile 
strength, but obviously the presence of the alloying 
element affects the microstructure, and thus the 
mechanical properties. The influence of individual 
elements, which includes the Mo equivalent, in 
multicomponent alloys is complex, which is why 
machine learning models are good for such analyses. 

The two most influential parameters for yield 
strength were tensile strength and Sn, wt.% (Figure 6). 
The influence of tensile strength is obvious from the 
reasons for the mechanics of metal deformation. The 
influence of the Sn content on the yield strength was 
investigated (Figure 5). In the Ti-17Nb-6Ta alloy, the 
addition of Sn up to 1.5 wt.% increased the yield 
strength [39]. Similarly, in the Ti–7.5Nb–4Mo–xSn 
alloys (x=1–4), a change in the deformation mechanism 
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Figure 4. Comparison of predicted and actual values by the number of tested samples for (a) tensile strength and (b) 
yield strength

Figure 5. Feature importance for tensile strength showing the content of iron as the most influential parameter

a) b)



from twisting to the  transformation and then to sliding 
was observed, resulting in a higher yield stress [40]. 

Despite all the mentioned achievements and benefits 
of the applied models, there are also limitations, 
especially concerning the data related to the mass 
concentrations of oxygen, nitrogen and hydrogen as 
impurities in the alloys. Currently, only the mass 
fraction of oxygen content is considered in the 
predictions, depending on availability. In addition, the 
lack of information on the porosity of the alloy is a 
significant limitation. In certain studies, the precise 
dimensional changes after mechanical treatments 
remain undetected, with only the final dimensions of the 
product. However, a complicating factor arises from the 
scarcity of new alloys’ characterization reported data. 
All these aforementioned issues can greatly impact the 
predictive models under discussion, therefore requiring 
consideration in future research work. 

 
Conclusion 4.

 
Using the Extra Trees Regressor model has 

provided valuable insight into predicting the 
mechanical properties of titanium alloys critical for 
biomedical applications. We found that integrating 
Poisson’s ratio and heat treatment parameters made 
the prediction of Young’s modulus more accurate, 
achieving an R² value of approximately 0.793 in the 
test set and reducing the MAE from 7,402 to 7,160 
GPa. 

In addition, our models showed strong predictive 
performance for both yield strength and tensile 

strength, despite a not particularly-large database. 
Moreover, the mass content of iron that affects the 
tensile strength, and the mass content of tin that 
affects the yield stress were identified, and the 
correlation coefficient was 0.893 and 0.868, 
respectively.  

Although the built model showed significant 
reliability in predicting the target properties, it is 
necessary to point out the limitations arising from the 
incomplete data on the impurity concentrations 
(oxygen, nitrogen, hydrogen), the porosity of the 
alloys, as well as the changes resulting from 
mechanical treatment. 

Looking ahead, further research should investigate 
additional variables such as the impurity mass 
content, the alloy porosity, and the strain values   after 
mechanical processing to refine the prediction models 
for titanium alloys, improving their accuracy and 
suitability for biomedical applications. 
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Apstrakt 
 
Biokompatibilne legure titanijuma imaju uravnoteženu kombinaciju poboljšanih mehaničkih svojstava i dobre 
biokompatibilnosti, što ih čini važnim materijalima u biomedicinskom inženjeringu. Postoji sve veća potražnja za ovim 
novim legurama sa superiornim svojstvima. Pored toga, postoji potreba za razumevanjem odnosa između parametara i 
svojstava, a mašinsko učenje se koristi kako bi ceo proces bio jeftiniji i efikasniji. Cilj ove studije je razvijanje preciznih 
modela mašinskog učenja za predviđanje mehaničkih svojstava: modula elastičnosti, zatezne čvrstoće i granice razvlačenja, 
specifično korišćenjem modela „Extra Trees Regressor“. U poređenju sa prethodnim rezultatima, uočeno je poboljšanje 
modela za predviđanje modula elastičnosti nakon uključivanja podataka o parametrima termičke obrade i Poasonovog 
odnosa. Ovo se odrazilo na smanjenje MAE sa 7,402 na 7,160 GPa. Kreirani su modeli za predviđanje vrednosti zatezne 
čvrstoće i granice razvlačenja, pri čemu su gvožđe i kalaj bili najznačajnije karakteristike, dok su koeficijenti korelacije za 
testni set bili 0,893 i 0,868.  
 
Ključne reči: Modul elastičnosti; Zatezna čvrstoća; Granica razvlačenja; Biokompatibilnost; Mašinsko učenje
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